找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamo and Dynamics, a Mathematical Challenge; P. Chossat,D. Ambruster,I. Oprea (Faculty of Mathe Book 2001 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: Coolidge
51#
發(fā)表于 2025-3-30 08:35:15 | 只看該作者
52#
發(fā)表于 2025-3-30 16:09:32 | 只看該作者
53#
發(fā)表于 2025-3-30 17:09:21 | 只看該作者
54#
發(fā)表于 2025-3-30 20:55:42 | 只看該作者
Jaya R. Soneji,Madhugiri Nageswara Raot [., ., ., .] and more realistic geometries can be easily studied numerically [6]. However, most flows of liquid metal are fully turbulent before reaching the dynamo threshold: indeed, the magnetic Prandtl number, . = μ.σν, where μ. is the magnetic permeability of vacuum, σ is the electric conducti
55#
發(fā)表于 2025-3-31 03:12:07 | 只看該作者
https://doi.org/10.1007/978-3-642-20447-0instability has been studied experimentally by Faller [.] and Caldwell & Van Atta [.], and numerically by Faller & Kaylor [.] , Lilly [.], Melander [.] and Ponty et al. [.]. The linear and nonlinear behaviour of Ekman- Couette instabilities in a plane layer has been discussed by Hoffmann et al. [.].
56#
發(fā)表于 2025-3-31 07:33:17 | 只看該作者
Jaya R. Soneji,Madhugiri Nageswara Raold a dynamo? We present eight variations of a flow motivated by the s2t2 flow numerically studied by Dudley and James [.]. Pulse decay measurements of an externally applied magnetic field are used to quantify the approach to transition to dynamo action.
57#
發(fā)表于 2025-3-31 12:39:16 | 只看該作者
https://doi.org/10.1007/978-3-642-20447-0 magnetic field, the dielectrophoretic force can be used to produce a central force field under microgravity conditions. In a space experiment, currently under construction, thermal convection in a rotating spherical gap with heated inner sphere and cooled outer sphere will be visualized by a Wollas
58#
發(fā)表于 2025-3-31 17:21:27 | 只看該作者
59#
發(fā)表于 2025-3-31 20:38:00 | 只看該作者
60#
發(fā)表于 2025-4-1 00:28:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
璧山县| 苍溪县| 怀来县| 涞水县| 游戏| 赞皇县| 林口县| 黄梅县| 始兴县| 乌兰察布市| 从化市| 乐清市| 城步| 保山市| 建瓯市| 泽普县| 远安县| 常州市| 三原县| 浮梁县| 唐山市| 韶山市| 宜川县| 大姚县| 乡宁县| 云龙县| 永年县| 南通市| 隆昌县| 晋城| 凤凰县| 宜良县| 旅游| 隆化县| 定兴县| 平谷区| 安图县| 海南省| 景泰县| 金坛市| 醴陵市|