找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 14:37:31 | 只看該作者
42#
發(fā)表于 2025-3-28 21:32:49 | 只看該作者
Book 2020and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated
43#
發(fā)表于 2025-3-29 02:19:16 | 只看該作者
44#
發(fā)表于 2025-3-29 04:38:23 | 只看該作者
Working with the Impulsive Personan application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.
45#
發(fā)表于 2025-3-29 10:14:20 | 只看該作者
Unpredictability in Topological Dynamics,an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.
46#
發(fā)表于 2025-3-29 12:59:09 | 只看該作者
47#
發(fā)表于 2025-3-29 16:56:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:38:31 | 只看該作者
49#
發(fā)表于 2025-3-30 01:53:50 | 只看該作者
50#
發(fā)表于 2025-3-30 04:26:19 | 只看該作者
,Arrow’s Impossibility Theorem,y described. Moreover, chaotic dynamics for fractals and applications on hybrid systems on a time scale, economic models, and weather and ocean dynamics are mentioned. Sources and consequences are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽江市| 富宁县| 三台县| 蒙城县| 武邑县| 土默特左旗| 东明县| 沁阳市| 游戏| 武胜县| 贵阳市| 固镇县| 博白县| 塘沽区| 邓州市| 绥阳县| 克山县| 五大连池市| 安丘市| 荃湾区| 汝阳县| 汕尾市| 千阳县| 沁水县| 兴国县| 盐边县| 宜兰市| 五常市| 柳河县| 平江县| 龙门县| 万宁市| 东乡族自治县| 博野县| 盘锦市| 鹿邑县| 乐至县| 镇巴县| 林芝县| 东乡族自治县| 洪江市|