找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復(fù)制鏈接]
查看: 52590|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:57:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dynamics with Chaos and Fractals
編輯Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily
視頻videohttp://file.papertrans.cn/285/284220/284220.mp4
概述Stands as the first book presenting theoretical background on the unpredictable point and mapping of fractals.Introduces the concepts of unpredictable functions, abstract self-similarity, and similari
叢書(shū)名稱(chēng)Nonlinear Systems and Complexity
圖書(shū)封面Titlebook: Dynamics with Chaos and Fractals;  Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a
描述.The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .
出版日期Book 2020
關(guān)鍵詞Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
版次1
doihttps://doi.org/10.1007/978-3-030-35854-9
isbn_softcover978-3-030-35856-3
isbn_ebook978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Dynamics with Chaos and Fractals影響因子(影響力)




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals被引頻次




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals年度引用




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals年度引用學(xué)科排名




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals讀者反饋




書(shū)目名稱(chēng)Dynamics with Chaos and Fractals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:53 | 只看該作者
2195-9994 provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .978-3-030-35856-3978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
板凳
發(fā)表于 2025-3-22 02:18:14 | 只看該作者
https://doi.org/10.1007/978-3-030-35854-9Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
地板
發(fā)表于 2025-3-22 04:54:31 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:22 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:02 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:24 | 只看該作者
Nonlinear Unpredictable Perturbations,The results of this chapter are continuation of the research of Poincaré chaos initiated in Chaps. . and .. We focus on the construction of an unpredictable function, continuous on the real axis. This is the first time that perturbations depend nonlinearly on unpredictable functions.
9#
發(fā)表于 2025-3-23 05:10:03 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 屏东市| 长兴县| 广安市| 陆丰市| 乐昌市| 水城县| 加查县| 专栏| 饶阳县| 肥乡县| 特克斯县| 大同市| 新和县| 揭阳市| 林甸县| 阜平县| 海林市| 高清| 南充市| 淮阳县| 富阳市| 静乐县| 名山县| 滦南县| 自治县| 德清县| 宜章县| 拉萨市| 镇江市| 江西省| 台中县| 弥渡县| 山丹县| 义乌市| 嘉黎县| 仁寿县| 陆丰市| 桐梓县| 普兰店市| 永川市|