找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics through First-Order Differential Equations in the Configuration Space; Jaume Llibre,Rafael Ramírez,Valentín Ramírez Book 2023 The

[復(fù)制鏈接]
查看: 8743|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:20:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamics through First-Order Differential Equations in the Configuration Space
編輯Jaume Llibre,Rafael Ramírez,Valentín Ramírez
視頻videohttp://file.papertrans.cn/285/284219/284219.mp4
概述Demonstrates the use of first order ODEs to study the dynamics of mechanical systems.Explores the importance of the Nambu bracket in the study of ODEs.Offers a solution to the inverse problem in celes
圖書封面Titlebook: Dynamics through First-Order Differential Equations in the Configuration Space;  Jaume Llibre,Rafael Ramírez,Valentín Ramírez Book 2023 The
描述The goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field – the Cartesian vector field – given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics.
出版日期Book 2023
關(guān)鍵詞First-Order Differential Equations; Nonholonomic Mechanics; Integrability; Nambu Bracket; Inverse Proble
版次1
doihttps://doi.org/10.1007/978-3-031-27095-6
isbn_softcover978-3-031-27097-0
isbn_ebook978-3-031-27095-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Dynamics through First-Order Differential Equations in the Configuration Space影響因子(影響力)




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space影響因子(影響力)學(xué)科排名




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space網(wǎng)絡(luò)公開度




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space被引頻次




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space被引頻次學(xué)科排名




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space年度引用




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space年度引用學(xué)科排名




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space讀者反饋




書目名稱Dynamics through First-Order Differential Equations in the Configuration Space讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:05 | 只看該作者
地板
發(fā)表于 2025-3-22 07:55:09 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:28 | 只看該作者
6#
發(fā)表于 2025-3-22 16:41:53 | 只看該作者
7#
發(fā)表于 2025-3-22 19:44:27 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:40 | 只看該作者
Dynamics via the First-Order Ordinary Differential Equations,In this chapter we introduce the general Cartesian vector fields . and the following particular classes of these vector fields:
9#
發(fā)表于 2025-3-23 04:18:47 | 只看該作者
10#
發(fā)表于 2025-3-23 05:46:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济阳县| 靖州| 自贡市| 久治县| 启东市| 内江市| 广河县| 达孜县| 五华县| 江口县| 开封县| 青龙| 岳阳县| 镇江市| 灵川县| 华安县| 门头沟区| 饶河县| 紫阳县| 永安市| 马龙县| 岢岚县| 增城市| 巍山| 遂平县| 綦江县| 华安县| 襄樊市| 巴楚县| 库伦旗| 夏邑县| 台山市| 岚皋县| 蒲城县| 民勤县| 湾仔区| 宁武县| 宿迁市| 阳曲县| 务川| 阿拉善左旗|