找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: vein220
21#
發(fā)表于 2025-3-25 07:20:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:29:50 | 只看該作者
Coexistence of Periodic Trajectories,xplained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, and information on the mutual location of these points often enables one to apply the methods of symbolic dynamics. These ideas are especially useful for the investigation of periodic trajectories.
23#
發(fā)表于 2025-3-25 14:46:59 | 只看該作者
cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
24#
發(fā)表于 2025-3-25 17:54:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:37 | 只看該作者
Topological Dynamics of Unimodal Maps,cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
26#
發(fā)表于 2025-3-26 03:40:43 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:20 | 只看該作者
Book 1997arious topological aspects of the dynamics of unimodal maps are studied in Chap- ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of e
28#
發(fā)表于 2025-3-26 10:28:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:25 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沽源县| 白玉县| 澜沧| 普陀区| 嘉义市| 新竹市| 绥化市| 凤山市| 开封市| 宝鸡市| 张北县| 滨州市| 行唐县| 正阳县| 淳化县| 灵寿县| 北安市| 扬州市| 惠州市| 安顺市| 北京市| 太谷县| 滨州市| 大洼县| 贵溪市| 凤凰县| 盈江县| 石阡县| 乐陵市| 遂平县| 闵行区| 清苑县| 多伦县| 永泰县| 湘潭县| 固镇县| 自治县| 阳西县| 高唐县| 芜湖市| 淮南市|