找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Foliations, Groups and Pseudogroups; Pawe? Walczak Book 2004 Springer Basel AG 2004 Bl?tterungen.Gruppen.Pseudogruppen.dynamis

[復(fù)制鏈接]
樓主: BID
11#
發(fā)表于 2025-3-23 11:28:23 | 只看該作者
The Foreign Policy Election That Wasn’t.6, we show how measures invariant under the geodesic flow of a foliation can be applied to the proof of the implication “if no resilient leaves, then vanishing entropy” for arbitrary codimension-one C.-foliations. This interesting idea is due to Hurder, was originated at the very beginning of the t
12#
發(fā)表于 2025-3-23 14:19:02 | 只看該作者
The Foreign Policy Election That Wasn’ttimation) of entropies of groups, pseudogroups and foliations. Finally, Section 4 is devoted to the study of topology of generic, with respect to any harmonic measure, leaves. Following Ghys [.] we show that there are just six topological types of such leaves in dimension 2.
13#
發(fā)表于 2025-3-23 21:15:52 | 只看該作者
14#
發(fā)表于 2025-3-23 23:11:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:30 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:53 | 只看該作者
The Foreign Policy Election That Wasn’tes on transversals invariant under holonomy maps. The study of such measures (called transverse invariant ones) was inaugurated by J. Plante [.] who has shown that the existence of such measures has some influence on the topology of a foliated manifold and is related to the growth types of leaves. S
17#
發(fā)表于 2025-3-24 11:23:45 | 只看該作者
The Foreign Policy Election That Wasn’t of various notions of dimensions, usually as sets or spaces with non-integer dimension. The most classical notion of dimension is due to Hausdorff [.], see [.] and [.] for a modern exposition. Here, we calculate or estimate the Hausdorff dimension of several fractal-like sets which appear, for inst
18#
發(fā)表于 2025-3-24 15:24:01 | 只看該作者
The Foreign Policy Election That Wasn’tllow beautiful ideas due to Attie and Hurder [.] who have shown that geometry of Riemannian manifolds quasi-isometric to leaves on compact foliated manifolds cannot be very chaotic in the sense that, on such a manifold, the maximal number of non-quasiisometric pieces of a given radius grows at most
19#
發(fā)表于 2025-3-24 20:49:20 | 只看該作者
20#
發(fā)表于 2025-3-25 00:06:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮梁县| 富顺县| 长泰县| 南涧| 定边县| 阜阳市| 定西市| 凤山县| 丹阳市| 威信县| 霍城县| 临安市| 揭阳市| 喀喇| 大洼县| 夏津县| 金平| 长治县| 寿宁县| 乐陵市| 临湘市| 新安县| 监利县| 吉首市| 兴义市| 布尔津县| 德安县| 福清市| 胶南市| 玉林市| 九龙坡区| 方山县| 溧阳市| 巴林左旗| 葵青区| 股票| 伊宁市| 安康市| 应城市| 临清市| 山西省|