找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Extremal Black Holes; Stefanos Aretakis Book 2018 The Author(s) 2018 Einstein equations.Extremal Reissner-Nordstrom black hole

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 09:47:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:12 | 只看該作者
Introduction to General Relativity and Black Hole DynamicsIn this Chapter we provide the general framework for curved spaces and introduce the notions of Lorentzian geometry which are necessary for understanding the mathematical aspects of general relativity and black hole dynamics. We also present rigorous results on the asymptotics of linear perturbations for sub-extremal black holes.
13#
發(fā)表于 2025-3-23 18:42:42 | 只看該作者
Extremal Reissner–Nordstr?m Black HolesIn this Chapter we thoroughly review the geometry of extremal Reissner–Nordstr?m black holes. We also present the main results on the asymptotics of linear perturbations on such backgrounds.
14#
發(fā)表于 2025-3-24 00:13:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:52:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:21 | 只看該作者
A Theory of Conservation Laws on Null HypersurfacesIn this Chapter we present a theory of conservation laws on null hypersurfaces in general Lorentzian manifolds. These conservation laws are a generalization of the conservation laws on extremal event horizons. We also review their relevance to the characteristic gluing problem and provide necessary and sufficient conditions for their existence.
17#
發(fā)表于 2025-3-24 12:49:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:43 | 只看該作者
https://doi.org/10.1007/978-3-319-95183-6Einstein equations; Extremal Reissner-Nordstrom black holes; Extremal Kerr black holes; Lorentzian geom
19#
發(fā)表于 2025-3-24 23:03:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:01 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/e/image/284076.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和平区| 兰州市| 天长市| 莎车县| 龙州县| 万年县| 泗阳县| 灵璧县| 宝坻区| 冕宁县| 义马市| 吴桥县| 吉木萨尔县| 云梦县| 新绛县| 东方市| 巨鹿县| 广汉市| 杨浦区| 贵港市| 环江| 通山县| 教育| 东至县| 施甸县| 盱眙县| 西乡县| 承德县| 涟源市| 隆子县| 满城县| 静乐县| 贵阳市| 阜新| 阜阳市| 奉节县| 中西区| 和顺县| 鸡西市| 大冶市| 普安县|