找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Dissipation; Piotr Garbaczewski,Robert Olkiewicz Book 2002 Springer-Verlag Berlin Heidelberg 2002 chaos.decoherence.dissipatio

[復制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 13:08:00 | 只看該作者
12#
發(fā)表于 2025-3-23 13:55:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:34:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:13:41 | 只看該作者
15#
發(fā)表于 2025-3-24 02:53:26 | 只看該作者
16#
發(fā)表于 2025-3-24 09:09:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:58 | 只看該作者
Finite Dissipative Quantum Systemswith special emphasis on the notions of complete positivity and normality for the quantum evolutions. Damping is then used to stabilise the motion of a kicked oscillator. Some statistical features of the orbits of the kicked quantum oscillator with damping are analysed in the semi-classical regime.
18#
發(fā)表于 2025-3-24 15:01:00 | 只看該作者
Driven Chaotic Mesoscopic Systems, Dissipation and Decoherencewell as in nuclear, atomic and molecular physics. Such systems tend to absorb energy. This irreversible effect is known as dissipation. More generally, . may b e a dynamical variable, where the total Hamiltonian is .. In such case the interaction of (.) with the environmental degrees of freedom (.)
19#
發(fā)表于 2025-3-24 20:59:39 | 只看該作者
Quantum State Control in Cavity QEDllator. What we will be presenting here in a rather general context, with a minimum of technical machinery, is the implementation of two original control schemes which are hitherto nonstandard when guiding quantum systems into some desired target state. However, we do believe that these novel contro
20#
發(fā)表于 2025-3-25 00:15:57 | 只看該作者
Solving Schr?dinger’s Equation for an Open System and Its Environmentdel for the open system and its environment. We highlight several remarkable features of our approach: its convolutionless formulation, the possibility to derive the corresponding nonlinear version, and the master equation for the ensemble mean. We finally apply it to the standard quantum theory of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广昌县| 友谊县| 海淀区| 安阳县| 曲松县| 景德镇市| 云浮市| 汝南县| 宜章县| 澄城县| 景泰县| 长岛县| 四川省| 泗洪县| 新密市| 沁源县| 玛沁县| 夹江县| 冷水江市| 英德市| 渭南市| 福建省| 娄烦县| 延边| 武陟县| 洛南县| 桂东县| 南木林县| 大英县| 西盟| 渝中区| 丹阳市| 巴青县| 邵武市| 曲周县| 大邑县| 阿瓦提县| 集安市| 湖南省| 西藏| 天门市|