找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics and Control of Advanced Structures and Machines; Contributions from t Valerii P. Matveenko,Michael Krommer,Hans Irschik Book 2019

[復制鏈接]
樓主: 懇求
41#
發(fā)表于 2025-3-28 15:00:41 | 只看該作者
B. G. M. van Engelen,G. J. van der Wilthematics but also a result of studies of particular problems in mechanics. One of the first methods, used for the analysis of dynamics in discontinuous mechanical systems, was the harmonic balance method developed in the thirties of the twentieth century. In our work, the results of analysis obtaine
42#
發(fā)表于 2025-3-28 21:24:53 | 只看該作者
43#
發(fā)表于 2025-3-29 02:21:16 | 只看該作者
B. G. M. van Engelen,G. J. van der Wiltused by the gas turbine engine failure (Cowles, Int J Fract 80:147–163, 1996; Shanyavsky, Simulation of fatigue fracture of metals. Synergetics in aviation. Monografiya, Ufa, 2007), along with high costs of service life estimation and potential costs of development of new constructions, stimulated a
44#
發(fā)表于 2025-3-29 06:11:40 | 只看該作者
45#
發(fā)表于 2025-3-29 07:48:44 | 只看該作者
H. J. Meijman,A. C. H. Valkenburghe proposed pH-formulation can be seen as a direct adoption of the calculus of variations on jet bundles, it is especially suited for mechanical systems exhibiting a variational character. Besides the pH-framework, an energy-based control scheme making heavy use of structural invariants (casimir fun
46#
發(fā)表于 2025-3-29 12:59:43 | 只看該作者
Introduction: Seeds Germinating and Growing set method constructs the current set of active constraints, the .-RATTLE time integration method is employed to solve the equality-constrained subproblem, and a Newton iteration is applied to solve the implicit system of update equations. The purely geometric formulation of the constraint function
47#
發(fā)表于 2025-3-29 18:42:01 | 只看該作者
48#
發(fā)表于 2025-3-29 20:03:13 | 只看該作者
49#
發(fā)表于 2025-3-30 03:09:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:51:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鹿邑县| 静乐县| 富平县| 通许县| 柳州市| 龙山县| 中牟县| 台安县| 翁牛特旗| 涞源县| 黑河市| 晋中市| 交城县| 呈贡县| 广宁县| 崇文区| 舞阳县| 海淀区| 勃利县| 孟津县| 青铜峡市| 华亭县| 南康市| 黄陵县| 合作市| 余姚市| 舟曲县| 宿迁市| 溆浦县| 香格里拉县| 宾阳县| 嘉鱼县| 黔江区| 舟曲县| 庄浪县| 民勤县| 襄汾县| 达拉特旗| 靖州| 虹口区| 绥宁县|