找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps; A Functional Approac Viviane Baladi Book 2018 Springer Internation

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:39:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:04 | 只看該作者
Manganmics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
13#
發(fā)表于 2025-3-23 20:04:28 | 只看該作者
14#
發(fā)表于 2025-3-24 01:46:44 | 只看該作者
Chromphism on a hyperbolic basic set and a differentiable weight function. The operator acts on two scales of anisotropic spaces of distributions on the manifold defined using cones (in the cotangent space) adapted to the diffeomorphism.
15#
發(fā)表于 2025-3-24 03:01:10 | 只看該作者
Zinneighted dynamical determinant, giving a lower bound on the disc in which this determinant is analytic and where its zeroes admit a spectral interpretation. We apply the results obtained on the weighted dynamical determinant to study the dynamical zeta function.
16#
發(fā)表于 2025-3-24 08:50:12 | 只看該作者
Wolfram SRB measures, in the spirit of the work of Gou?zel-Liverani, recovering classical results of existence, uniqueness, and exponential mixing. Then we present Tsujii’s unpublished proof of Anosov’s theorem using anisotropic spaces.
17#
發(fā)表于 2025-3-24 11:31:52 | 只看該作者
https://doi.org/10.1007/978-3-319-77661-3dynamical zeta functions; Ruelle transfer operators; Anosov diffeomorphisms; anisotropic Banach Spaces;
18#
發(fā)表于 2025-3-24 17:20:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:09 | 只看該作者
Smooth expanding maps: The spectrum of the transfer operatormics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
20#
發(fā)表于 2025-3-25 03:00:14 | 只看該作者
Smooth expanding maps: Dynamical determinantspanding dynamics and weights. The proof uses the Milnor-Thurston kneading operator approach. The contents of this chapter are a blueprint for the technically more involved situation of hyperbolic dynamics and the corresponding anisotropic Banach spaces in Part II.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宣县| 麻江县| 延吉市| 多伦县| 泰兴市| 九龙城区| 宜宾县| 宣恩县| 年辖:市辖区| 砀山县| 苍南县| 尚志市| 石棉县| 扬州市| 南宫市| 射洪县| 广宗县| 五常市| 涟源市| 丰台区| 湖口县| 巴林右旗| 阿城市| 张家港市| 松江区| 泰兴市| 宁都县| 平阴县| 喜德县| 淳安县| 汾西县| 明光市| 仁化县| 喀什市| 正定县| 修水县| 突泉县| 饶阳县| 锦州市| 同江市| 海城市|