找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems, Control, Coding, Computer Vision; New Trends, Interfac Giorgio Picci,David S. Gilliam Conference proceedings 1999 Birkh?

[復(fù)制鏈接]
樓主: 天真無邪
11#
發(fā)表于 2025-3-23 10:01:28 | 只看該作者
12#
發(fā)表于 2025-3-23 17:10:36 | 只看該作者
Group Codes and Behaviors,inear time-invariant (LTI) system over a . field, always finite-dimensional, in general multivariable. These connections were exploited in the 1970’s to develop an algebraic structure theory of convolutional codes [5], the key elements of which turned out later to be useful in linear system theory [
13#
發(fā)表于 2025-3-23 20:32:00 | 只看該作者
The Berlekamp-Massey algorithm, error-correction, keystreams and modeling,e have been observations on the existence of connections between the two areas. One of the first of these observations was concerned with the Berlekamp-Massey algorithm, derived in [5, 22] for the purpose of decoding BCH/Reed-Solomon codes. Indeed, following upon Massey’s exposition in [22], Sain po
14#
發(fā)表于 2025-3-23 23:43:49 | 只看該作者
15#
發(fā)表于 2025-3-24 05:01:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:09:16 | 只看該作者
17#
發(fā)表于 2025-3-24 13:45:07 | 只看該作者
https://doi.org/10.1007/978-3-663-11793-3tral factorization, can be mirrored by state variable procedures which rely on knowledge of a steady state Riccati equation solution. In contrast to many occurrences of steady state Riccati equations, it is possible (especially in network applications) to encounter equations which have strong, but n
18#
發(fā)表于 2025-3-24 16:49:57 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:23 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:08 | 只看該作者
Informationsdarstellung für Analphabetenslight generalizations of previous results, see Gohberg and Zucker [12, 13] and Zucker [18]. Rather, the main interest is in the different, functional oriented, technique used which allows the establishing of a clearer connection between factorization theory and geometry. That such a connection exis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林州市| 仙游县| 山阳县| 丰顺县| 汉中市| 姚安县| 永仁县| 如皋市| 和林格尔县| 荆门市| 盖州市| 措美县| 郸城县| 深州市| 香格里拉县| 河北省| 三门峡市| 上犹县| 旬阳县| 罗山县| 石景山区| 陇西县| 乐山市| 蛟河市| 迁西县| 章丘市| 竹北市| 土默特右旗| 新昌县| 黔西县| 逊克县| 景德镇市| 奇台县| 杭州市| 灌阳县| 洛川县| 白山市| 安阳市| 五河县| 丰顺县| 永泰县|