找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems and Chaos; Proceedings of the S Luis Garrido Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Chaos.Cha

[復(fù)制鏈接]
查看: 10894|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:57:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamical Systems and Chaos
副標(biāo)題Proceedings of the S
編輯Luis Garrido
視頻videohttp://file.papertrans.cn/284/283851/283851.mp4
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Dynamical Systems and Chaos; Proceedings of the S Luis Garrido Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Chaos.Cha
出版日期Conference proceedings 1983
關(guān)鍵詞Chaos; Chaos (Math; ); Dynamical system; Dynamisches System; dynamical systems
版次1
doihttps://doi.org/10.1007/3-540-12276-1
isbn_softcover978-3-540-12276-0
isbn_ebook978-3-540-39594-2Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer-Verlag Berlin Heidelberg 1983
The information of publication is updating

書目名稱Dynamical Systems and Chaos影響因子(影響力)




書目名稱Dynamical Systems and Chaos影響因子(影響力)學(xué)科排名




書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開(kāi)度




書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Dynamical Systems and Chaos被引頻次




書目名稱Dynamical Systems and Chaos被引頻次學(xué)科排名




書目名稱Dynamical Systems and Chaos年度引用




書目名稱Dynamical Systems and Chaos年度引用學(xué)科排名




書目名稱Dynamical Systems and Chaos讀者反饋




書目名稱Dynamical Systems and Chaos讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:21 | 只看該作者
https://doi.org/10.1007/978-3-662-44268-5ternal forces. The onset of diffusion has strong analogies with a phase-transition. The diffusion coefficient is the order parameter and has a universal critical exponent. The dependence on random external fluctuations is also universal and can be expressed in terms of a universal scaling function which is calculated analytically.
板凳
發(fā)表于 2025-3-22 02:11:04 | 只看該作者
Macroscopic behavior in a simple chaotic Hamiltonian system,ich too (like the main regime) is the same for both time directions. One of the two particles hereby shows a statistical directional preference. This preference is the same as when the system is run as an open system (‘temporarily open regime’). The simple nature of the system encourages further quantitative and qualitative investigations.
地板
發(fā)表于 2025-3-22 05:33:31 | 只看該作者
Self-generated diffusion and universal critical properties in chaotic systems,ternal forces. The onset of diffusion has strong analogies with a phase-transition. The diffusion coefficient is the order parameter and has a universal critical exponent. The dependence on random external fluctuations is also universal and can be expressed in terms of a universal scaling function which is calculated analytically.
5#
發(fā)表于 2025-3-22 09:15:06 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:49 | 只看該作者
Imbedding of a one-dimensional endomorphism into a two-dimensional diffeomorphism. Implications,μ, such that μ = o gives a one unit decrease of the dimension. The method of sections of Poincaré gives a generalization of T., x. = f(x., a) + y. h(x., y.), y. b g(x., y.) ., b = 0(μ.), a > o, f, g, h being functions such that this mapping T is a difformorphism .. Then Tb can be considered as a first approach to the study of T.
7#
發(fā)表于 2025-3-22 19:37:49 | 只看該作者
Chaotic dynamics in Hamiltonian systems with divided phase space,
8#
發(fā)表于 2025-3-23 00:09:49 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:00 | 只看該作者
,A universal transition from quasi-periodicity to Chaos — Abstract,
10#
發(fā)表于 2025-3-23 06:04:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永兴县| 鄂托克旗| 中方县| 西平县| 庆城县| 丹棱县| 安西县| 巫溪县| 汝南县| 旅游| 达州市| 大石桥市| 聂拉木县| 仙桃市| 朝阳区| 渭源县| 临漳县| 开化县| 繁峙县| 谷城县| 中西区| 阿坝县| 皮山县| 平谷区| 徐汇区| 永福县| 平和县| 永兴县| 吴川市| 四子王旗| 江源县| 兴城市| 吉木萨尔县| 昌邑市| 日土县| 兰坪| 满洲里市| 威宁| 宁夏| 舒兰市| 松江区|