找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Problems in Soliton Systems; Proceedings of the S Shozo Takeno Conference proceedings 1985 Springer-Verlag Berlin Heidelberg 1985

[復(fù)制鏈接]
查看: 46678|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:15:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamical Problems in Soliton Systems
副標(biāo)題Proceedings of the S
編輯Shozo Takeno
視頻videohttp://file.papertrans.cn/284/283841/283841.mp4
叢書名稱Springer Series in Synergetics
圖書封面Titlebook: Dynamical Problems in Soliton Systems; Proceedings of the S Shozo Takeno Conference proceedings 1985 Springer-Verlag Berlin Heidelberg 1985
出版日期Conference proceedings 1985
關(guān)鍵詞mechanics; nonlinear systems; paper; physics; soliton; theoretical physics
版次1
doihttps://doi.org/10.1007/978-3-662-02449-2
isbn_softcover978-3-662-02451-5
isbn_ebook978-3-662-02449-2Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer-Verlag Berlin Heidelberg 1985
The information of publication is updating

書目名稱Dynamical Problems in Soliton Systems影響因子(影響力)




書目名稱Dynamical Problems in Soliton Systems影響因子(影響力)學(xué)科排名




書目名稱Dynamical Problems in Soliton Systems網(wǎng)絡(luò)公開度




書目名稱Dynamical Problems in Soliton Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamical Problems in Soliton Systems被引頻次




書目名稱Dynamical Problems in Soliton Systems被引頻次學(xué)科排名




書目名稱Dynamical Problems in Soliton Systems年度引用




書目名稱Dynamical Problems in Soliton Systems年度引用學(xué)科排名




書目名稱Dynamical Problems in Soliton Systems讀者反饋




書目名稱Dynamical Problems in Soliton Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:08 | 只看該作者
Approximations for the Inverse Scattering Transforminverse scattering transform) [1]. Although the IST is an exact method, its complexity does require that one be able to make use of some approximations. And while I shall be discussing approximations, let me note that I also shall be emphasizing the methods and not the mathematical details.
板凳
發(fā)表于 2025-3-22 04:19:59 | 只看該作者
The Zabolotskaya-Khokhlov Equation and the Inverse Scattering Problem of Classical Mechanicsondition between two classical Hamiltonian flows, one evolving in Y with Hamiltonian H.= P./2 + U(X,Y,T), and the other evolving in T, with Hamiltonian H.= P./3 + P U(X,Y,T) + V(X,Y,T). Some solutions of the system may consequently be derived from solutions of the Benney hierarchy, a class of moment
地板
發(fā)表于 2025-3-22 08:11:33 | 只看該作者
5#
發(fā)表于 2025-3-22 08:53:29 | 只看該作者
6#
發(fā)表于 2025-3-22 13:50:46 | 只看該作者
A New Approach to Completely Integrable Partial Differential Equations by Means of the Singularity A exact reduction of a completely integrable nonlinear partial differential equation (PDE) is of Painlevé type. Here an ODE is said to be of Painlevé type if its general solution has no movable singularities other than poles. Moreover they presented an explicit algorithm to test whether a given ODE s
7#
發(fā)表于 2025-3-22 18:01:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:13 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:08 | 只看該作者
Solitons in the Quantum Toda LatticeANG and YANG [2] on the Bose gas with repulsive delta-function interactions. SUTHERLAND [3] generalized the method to other integrable systems, where Bethe’s ansatz does not give the exact but only the asymptotic wave functions; however, this is sufficient to obtain the ground state energy and the e
10#
發(fā)表于 2025-3-23 07:35:44 | 只看該作者
Quantum Three Wave Interaction Models: Bethe Ansatz and Statistical Mechanicsfor many other models such as the quantum nonlinear Schr?dinger model (delta-function interaction model) [2], the massive Thirring model [3], etc.. C.N.Yang and C.P.Yang exploit this method, and succeed in getting the equilibrium of the thermodynamics of the system with a finite temperature [4]. We
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
颍上县| 湘乡市| 伊春市| 平利县| 东辽县| 宜黄县| 南康市| 红河县| 屏山县| 衡阳市| 龙口市| 长白| 新丰县| 安龙县| 五峰| 西平县| 鄱阳县| 依兰县| 合山市| 成安县| 应城市| 太保市| 祁连县| 陆川县| 岑巩县| 鄂州市| 泸州市| 丹江口市| 凤凰县| 韶关市| 克山县| 麻阳| 双辽市| 巴塘县| 成都市| 宜都市| 广昌县| 卢龙县| 施甸县| 临潭县| 武乡县|