找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Neuroscience; Statistics, Modeling Zhe Chen,Sridevi V. Sarma Book 2018 Springer International Publishing AG 2018 Neural signal proc

[復(fù)制鏈接]
查看: 18036|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:20:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dynamic Neuroscience
副標(biāo)題Statistics, Modeling
編輯Zhe Chen,Sridevi V. Sarma
視頻videohttp://file.papertrans.cn/284/283684/283684.mp4
概述Presents innovative methodological and algorithmic development in statistics, modeling, control, and signal processing for neural data analysis;.Includes a coherent framework for a broad class of neur
圖書(shū)封面Titlebook: Dynamic Neuroscience; Statistics, Modeling Zhe Chen,Sridevi V. Sarma Book 2018 Springer International Publishing AG 2018 Neural signal proc
描述This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.
出版日期Book 2018
關(guān)鍵詞Neural signal processing; Neuronal coding theories; Neural engineering; Neural activity; State-space par
版次1
doihttps://doi.org/10.1007/978-3-319-71976-4
isbn_softcover978-3-030-10139-8
isbn_ebook978-3-319-71976-4
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Dynamic Neuroscience影響因子(影響力)




書(shū)目名稱(chēng)Dynamic Neuroscience影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dynamic Neuroscience網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dynamic Neuroscience網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dynamic Neuroscience被引頻次




書(shū)目名稱(chēng)Dynamic Neuroscience被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dynamic Neuroscience年度引用




書(shū)目名稱(chēng)Dynamic Neuroscience年度引用學(xué)科排名




書(shū)目名稱(chēng)Dynamic Neuroscience讀者反饋




書(shū)目名稱(chēng)Dynamic Neuroscience讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:44 | 只看該作者
Sound,re the nature of trial-to-trail variability, and seek to verify our hypothesis by developing a decoding algorithm that predicts context from spiking data using a model characterizing changes in the full distribution of firing rate structure across trials. We compare this algorithm to another decodin
板凳
發(fā)表于 2025-3-22 04:14:06 | 只看該作者
Martin Kahmann,Roland Kleinknechttes that affect behavior, and (2) identifying neural correlates of stimuli, responses, and states. The framework consists of first constructing state-space models from behavioral data using maximum likelihood methods, and then identifying neural correlates of external stimuli, behavioral responses,
地板
發(fā)表于 2025-3-22 07:11:26 | 只看該作者
Kommunikationsmittel im Strommarktr infer the brain’s intention during adaptation. This decoder significantly improves the speed and accuracy of model adaptation. Moreover, at steady state, the learned point process filter improves performance over the state-of-the-art Kalman filters due to the fast control and feedback rates and th
5#
發(fā)表于 2025-3-22 10:31:28 | 只看該作者
Marktforschung: Beispiel Prepaymentz?hleraid our understanding of the pathological states related to these signals and has the potential to be used in designing bio-inspired pulsatile controllers; immediate applications include understanding normal and pathological neuroendocrine and affective states.
6#
發(fā)表于 2025-3-22 13:33:15 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:25 | 只看該作者
Matthias Heining,Ralf Schünemannonly predict the networks underlying anesthesia-induced oscillations but also guide experiments to further understand the role of these oscillations in the behavioral states that accompany anesthesia.
8#
發(fā)表于 2025-3-22 23:30:46 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:00 | 只看該作者
What Can Trial-to-Trial Variability Tell Us? A Distribution-Based Approach to Spike Train Decoding ire the nature of trial-to-trail variability, and seek to verify our hypothesis by developing a decoding algorithm that predicts context from spiking data using a model characterizing changes in the full distribution of firing rate structure across trials. We compare this algorithm to another decodin
10#
發(fā)表于 2025-3-23 07:12:07 | 只看該作者
Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Modelstes that affect behavior, and (2) identifying neural correlates of stimuli, responses, and states. The framework consists of first constructing state-space models from behavioral data using maximum likelihood methods, and then identifying neural correlates of external stimuli, behavioral responses,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜都市| 浪卡子县| 绿春县| 南陵县| 沈丘县| 芒康县| 安泽县| 进贤县| 梅河口市| 南宫市| 巴林左旗| 烟台市| 桐乡市| 华容县| 克东县| 锡林浩特市| 平阳县| 尉犁县| 东方市| 吉林省| 灌南县| 兴安县| 黄大仙区| 巴里| 大洼县| 仲巴县| 新蔡县| 信阳市| 宽甸| 文成县| 高州市| 莱阳市| 西峡县| 丹凤县| 阿尔山市| 新绛县| 荥阳市| 日喀则市| 岚皋县| 偏关县| 洪泽县|