找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Network Representation Based on Latent Factorization of Tensors; Hao Wu,Xuke Wu,Xin Luo Book 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: Disaster
11#
發(fā)表于 2025-3-23 10:38:39 | 只看該作者
12#
發(fā)表于 2025-3-23 16:35:49 | 只看該作者
13#
發(fā)表于 2025-3-23 18:27:02 | 只看該作者
K,ter vision and other fields [1–5]. For a third-order HDI tensor modeling a dynamic network, this book carry out some preliminary research on latent factorization of tensors methods to implement accurate representation for dynamic networks. Further, in real industrial applications, in order to tackle
14#
發(fā)表于 2025-3-24 01:39:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:42 | 只看該作者
https://doi.org/10.1007/978-981-19-8934-6Dynamic network representation; Latent factorization of tensors; High-dimensional and incomplete tenso
16#
發(fā)表于 2025-3-24 08:03:03 | 只看該作者
978-981-19-8933-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
17#
發(fā)表于 2025-3-24 13:20:29 | 只看該作者
Hao Wu,Xuke Wu,Xin LuoExposes readers to a novel research perspective regarding dynamic network representation.Presents four dynamic network representation methods based on latent factorization of tensors.Accomplishes accu
18#
發(fā)表于 2025-3-24 15:26:44 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/e/image/283681.jpg
19#
發(fā)表于 2025-3-24 20:54:50 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:29 | 只看該作者
Multiple Biases-Incorporated Latent Factorization of Tensors,tion on extracting useful knowledge form an HDI tensor. However, existing LFT-based models lack solid consideration for the volatility of dynamic network data, thereby leading to the descent of model representation learning ability. To tackle this problem, this chapter proposes a multiple biases-inc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴县| 朝阳区| 枣强县| 德阳市| 黄大仙区| 平安县| 乌什县| 金乡县| 阳东县| 通州区| 百色市| 富阳市| 滁州市| 红河县| 周宁县| 宾川县| 杭锦后旗| 军事| 莱芜市| 黔南| 鄂托克前旗| 河曲县| 海丰县| 灵台县| 本溪市| 衡阳县| 水富县| 黑山县| 通化县| 罗江县| 宜昌市| 上虞市| 闻喜县| 连江县| 梁平县| 英山县| 庆元县| 万宁市| 武城县| 都安| 广西|