找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Impulse Systems; Theory and Applicati S. T. Zavalishchin,A. N. Sesekin Book 1997 Springer Science+Business Media Dordrecht 1997 con

[復(fù)制鏈接]
樓主: Coarctation
11#
發(fā)表于 2025-3-23 11:12:37 | 只看該作者
Discontinuous Solutions to Ordinary Nonlinear Differential Equations in the Space of Functions of B considered. A Cauchy formula for the discontinuous solutions to bilinear systems is obtained. Discontinuous solutions to neutral type nonlinear differential equations are discussed. In particular, we obtain a generalization of Gronwall—Bellman’s lemma for the space of functions of bounded variation.
12#
發(fā)表于 2025-3-23 17:34:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:00 | 只看該作者
Water Politics and Development Cooperationof bilinear systems, the number of control impulses needed for the system to pass to a given point of the attainability set is estimated. Similar problems for dynamic systems with absolutely continuous trajectories has been studied in [25, 14, 108].
14#
發(fā)表于 2025-3-24 01:52:32 | 只看該作者
15#
發(fā)表于 2025-3-24 05:30:12 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:49 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:45 | 只看該作者
Water Politics and Development Cooperationhas been developed by J. I. Massera and J. J. Sch?ffer [63] and is based on Banach’s about inverse—transform theorem. This theorem is applied to maps establishing a correspondence between solutions with vanishing Cauchy data and additive perturbations. Another approach has been introduced by R.Bellm
18#
發(fā)表于 2025-3-24 18:35:10 | 只看該作者
Water Politics and Development Cooperation distributions to be distributional derivatives of functions of bounded variation. We concern a definition of solutions to ordinary differential equations in the space of functions of bounded variation. We define discontinuous solutions by means of closing the absolutely continuous solutions set. It
19#
發(fā)表于 2025-3-24 21:48:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:50:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡市| 花莲市| 湘阴县| 广宗县| 临湘市| 社会| 吴川市| 沾化县| 铁岭市| 上林县| 清水河县| 云林县| 福建省| 罗定市| 大丰市| 永靖县| 沁阳市| 沾化县| 新邵县| 射洪县| 赤城县| 全南县| 金阳县| 沙田区| 庄河市| 兰考县| 麻栗坡县| 牡丹江市| 顺平县| 松原市| 盐城市| 容城县| 芷江| 大石桥市| 大冶市| 江川县| 绵竹市| 昆明市| 稻城县| 云安县| 连江县|