找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Duality Principles in Nonconvex Systems; Theory, Methods and David Yang Gao Book 2000 Springer Science+Business Media Dordrecht 2000 Mathe

[復(fù)制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 05:49:12 | 只看該作者
Unicameral or Bicameral Parliaments them to illustrate a general duality theory for .-dimensional nonconvex finite deformation systems in which the geometrical mapping Λ is a nonlinear partial differential operator. The methods and ideas can certainly be generalized to many other problems.
22#
發(fā)表于 2025-3-25 10:02:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:08:54 | 只看該作者
https://doi.org/10.1007/978-1-4757-3176-7Mathematica; applied mathematics; deformation; dynamical systems; engineering mechanics; functional analy
24#
發(fā)表于 2025-3-25 18:07:30 | 只看該作者
25#
發(fā)表于 2025-3-25 22:21:51 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:47 | 只看該作者
27#
發(fā)表于 2025-3-26 04:27:47 | 只看該作者
Duality in Finite Deformation Systems them to illustrate a general duality theory for .-dimensional nonconvex finite deformation systems in which the geometrical mapping Λ is a nonlinear partial differential operator. The methods and ideas can certainly be generalized to many other problems.
28#
發(fā)表于 2025-3-26 12:02:28 | 只看該作者
29#
發(fā)表于 2025-3-26 12:59:11 | 只看該作者
Mono-Duality in Static Systemshematical physics and of discrete systems of networks. By introducing abstract notations, we are able to see unifying structures in the different theories. Through pure mathematical analysis, the intrinsic inner beauty in physical nature can be revealed.
30#
發(fā)表于 2025-3-26 18:22:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东台市| 双柏县| 永春县| 巴南区| 富蕴县| 大埔区| 台北市| 那曲县| 成武县| 桂阳县| 溧水县| 紫云| 罗城| 汉寿县| 桦甸市| 镇赉县| 盐亭县| 长宁区| 博乐市| 高青县| 张掖市| 马山县| 高淳县| 天柱县| 松阳县| 克拉玛依市| 固始县| 肃宁县| 武城县| 黄陵县| 临安市| 永川市| 湟中县| 克东县| 龙里县| 达拉特旗| 固原市| 道孚县| 通化市| 绍兴县| 洞口县|