找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dualisability; Unary Algebras and B Jane Pitkethly,Brian Davey Book 2005 Springer-Verlag US 2005 Duality theory.Finite.General algebra.Morp

[復(fù)制鏈接]
查看: 48859|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:20:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dualisability
副標(biāo)題Unary Algebras and B
編輯Jane Pitkethly,Brian Davey
視頻videohttp://file.papertrans.cn/284/283315/283315.mp4
概述Using pictorial unary algebras as a source of examples, this text takes a reader with a minimal background in general algebra to the forefront of research in natural duality theory
叢書名稱Advances in Mathematics
圖書封面Titlebook: Dualisability; Unary Algebras and B Jane Pitkethly,Brian Davey Book 2005 Springer-Verlag US 2005 Duality theory.Finite.General algebra.Morp
描述.Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems...Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples...A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability..
出版日期Book 2005
關(guān)鍵詞Duality theory; Finite; General algebra; Morphism; Quasivarieties; Topological representations; Unary alge
版次1
doihttps://doi.org/10.1007/0-387-27570-3
isbn_softcover978-1-4419-3901-2
isbn_ebook978-0-387-27570-3
copyrightSpringer-Verlag US 2005
The information of publication is updating

書目名稱Dualisability影響因子(影響力)




書目名稱Dualisability影響因子(影響力)學(xué)科排名




書目名稱Dualisability網(wǎng)絡(luò)公開度




書目名稱Dualisability網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dualisability被引頻次




書目名稱Dualisability被引頻次學(xué)科排名




書目名稱Dualisability年度引用




書目名稱Dualisability年度引用學(xué)科排名




書目名稱Dualisability讀者反饋




書目名稱Dualisability讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:32 | 只看該作者
Advances in Mathematicshttp://image.papertrans.cn/e/image/283315.jpg
板凳
發(fā)表于 2025-3-22 01:31:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:05:33 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:52 | 只看該作者
6#
發(fā)表于 2025-3-22 14:52:20 | 只看該作者
Full and strong dualisability: three-element unary algebras,
7#
發(fā)表于 2025-3-22 17:14:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:48 | 只看該作者
Book 2005ellent source of examples and counterexamples...A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability..
9#
發(fā)表于 2025-3-23 01:52:36 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:40 | 只看該作者
nt of research in natural duality theory.Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems...Una
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德清县| 济宁市| 潼关县| 栖霞市| 神木县| 瑞金市| 深州市| 宣威市| 军事| 茌平县| 瓮安县| 扎兰屯市| 乐业县| 通河县| 南澳县| 勐海县| 政和县| 社旗县| 九龙县| 隆昌县| 福安市| 闽清县| 兴业县| 砚山县| 鄯善县| 图木舒克市| 大荔县| 当涂县| 岳西县| 临沂市| 麦盖提县| 洛南县| 新干县| 延庆县| 新竹县| 应城市| 芦溪县| 扬中市| 登封市| 沙洋县| 海阳市|