找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dual-Feasible Functions for Integer Programming and Combinatorial Optimization; Basics, Extensions a Claudio Alves,Francois Clautiaux,Jurge

[復(fù)制鏈接]
樓主: 法庭
11#
發(fā)表于 2025-3-23 13:11:17 | 只看該作者
2364-687X s that may be applied to a broad set of applications. Examples are provided to illustrate the underlying concepts and to pave the way for future contributions.978-3-319-80183-4978-3-319-27604-5Series ISSN 2364-687X Series E-ISSN 2364-6888
12#
發(fā)表于 2025-3-23 16:24:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:23 | 只看該作者
14#
發(fā)表于 2025-3-23 23:36:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:36 | 只看該作者
Claudio Alves,Francois Clautiaux,Jurgen RietzExplains the concept of dual-feasible functions within the general framework of duality, Dantzig-Wolfe decomposition and column generation.Details relevant extensions and applications of dual-feasible
16#
發(fā)表于 2025-3-24 08:35:02 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:21 | 只看該作者
Pengpeng Chen,Hailong Sun,Zhijun Chenclassical formulation of Gilmore and Gomory for this problem. Since many problems can be modeled using a similar formulation, it makes sense to explore the concept of dual-feasible function within a more general class of applications. A first approach is to considermulti-dimensional dual-feasible fu
19#
發(fā)表于 2025-3-24 20:43:56 | 只看該作者
Leong Hou U,Marc Spaniol,Junying Chen particular to derive valid inequalities for integer programs. Since the notion of superadditivity is essential for this purpose, we start by reviewing superadditivity in the scope of valid inequalities. Different examples are provided with alternative families of dualfeasible functions. We discuss
20#
發(fā)表于 2025-3-25 02:22:02 | 只看該作者
What Have We Learned from OpenReview?Integer Programming (IP) is a modelling tool that has been widely applied in the last decades to obtain solutions for complex real problems, as those that arise in cutting and packing, location, routing and many other areas.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淳安县| 金塔县| 金溪县| 宁津县| 大埔县| 邯郸市| 哈尔滨市| 尉氏县| 枝江市| 巴里| 淮北市| 高淳县| 鹤山市| 邻水| 洪江市| 科技| 大渡口区| 诸暨市| 肥东县| 娄底市| 荃湾区| 东光县| 剑阁县| 天柱县| 天峨县| 鄂托克前旗| 垫江县| 吉安县| 静海县| 佛坪县| 饶阳县| 慈利县| 岱山县| 东海县| 中西区| 兰考县| 安乡县| 晋城| 永寿县| 新巴尔虎左旗| 阿巴嘎旗|