找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dual Variational Approach to Nonlinear Diffusion Equations; Gabriela Marinoschi Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 13457|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:29:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations
編輯Gabriela Marinoschi
視頻videohttp://file.papertrans.cn/284/283299/283299.mp4
概述Presents technique for proving existence of solutions to nonlinear diffusion equations.Utilizes specific examples that can model real-world physical processes.Chapters develop methods for treating par
叢書(shū)名稱(chēng)Progress in Nonlinear Differential Equations and Their Applications
圖書(shū)封面Titlebook: Dual Variational Approach to Nonlinear Diffusion Equations;  Gabriela Marinoschi Book 2023 The Editor(s) (if applicable) and The Author(s),
描述.This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical modelsto various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well..
出版日期Book 2023
關(guān)鍵詞Dual variational inequalities; Brezis-Ekeland principle; Legendre-Fenchel inequalities; Convex optimiza
版次1
doihttps://doi.org/10.1007/978-3-031-24583-1
isbn_softcover978-3-031-24585-5
isbn_ebook978-3-031-24583-1Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations影響因子(影響力)




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations被引頻次




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations年度引用




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations讀者反饋




書(shū)目名稱(chēng)Dual Variational Approach to Nonlinear Diffusion Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:59 | 只看該作者
Nonlinear Diffusion Equations with Slow and Fast Diffusion,n characterized by a singular diffusion coefficient .(., ., .) which blows-up at a finite value . of the solution .. More exactly, this has a growth with the exponent .???2 for .?∈?(1, 2) corresponding to a fast diffusion. The minimization problem with a constraint is introduced for this case in a m
板凳
發(fā)表于 2025-3-22 01:17:18 | 只看該作者
Dual Variational Approach to Nonlinear Diffusion Equations
地板
發(fā)表于 2025-3-22 06:46:53 | 只看該作者
5#
發(fā)表于 2025-3-22 10:06:38 | 只看該作者
6#
發(fā)表于 2025-3-22 15:01:21 | 只看該作者
Nonlinear Diffusion Equations with Slow and Fast Diffusion,ing a variational principle, in the case when .(., ., ?) is provided by a continuous potential .(., ., ?) having a polynomial growth. The technique used to prove the existence consists in reducing the nonlinear problem to a convex optimization problem via the Legendre-Fenchel relations. A functional
7#
發(fā)表于 2025-3-22 19:14:10 | 只看該作者
Weakly Coercive Nonlinear Diffusion Equations, considered in Chap. ., more precisely with a monotonically increasing time and space depending nonlinearity .(., ., ?) provided by a potential .(., ., ?) having a weak coercivity property. This hypothesis may apply to .(., ., .) of polynomial type with respect to ., with the exponent .?∈?(1, 2) cha
8#
發(fā)表于 2025-3-22 22:56:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:40:31 | 只看該作者
10#
發(fā)表于 2025-3-23 09:14:11 | 只看該作者
An Optimal Control Problem for a Phase Transition Model,cussed in this chapter is to force a sharp interface separation between the states of the system by means of a distributed heat source and a boundary heat source as controls, while keeping its temperature at a certain average level. This is an optimal control problem with state and control restricti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 12:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 修文县| 许昌县| 宜丰县| 长白| 望城县| 正宁县| 巍山| 临汾市| 定远县| 新闻| 铜鼓县| 宜良县| 将乐县| 墨脱县| 乐业县| 石柱| 肇东市| 越西县| 新野县| 卓尼县| 宜阳县| 吴堡县| 徐水县| 南陵县| 四川省| 阿勒泰市| 杭锦后旗| 江北区| 简阳市| 格尔木市| 昭觉县| 苍梧县| 垫江县| 临汾市| 黔西| 清苑县| 和田市| 股票| 白玉县| 宁远县|