找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Theory, Logic and Computation; Proceedings of the 2 G Q Zhang,J. Lawson,M.-K. Luo Conference proceedings 2003 Springer Science+Busin

[復(fù)制鏈接]
樓主: lumbar-puncture
31#
發(fā)表于 2025-3-26 23:39:26 | 只看該作者
Raquel Pastor Pastor,Henrik Legind Larsentational semantics. The purpose of the paper is to provide a gentle introduction to these notions, and to advocate a particular point of view which makes significant use of them. The main ideas here are not new, though our expository slant is somewhat novel, and some of our examples lead to seemingl
32#
發(fā)表于 2025-3-27 02:01:25 | 只看該作者
https://doi.org/10.1007/978-3-319-53160-1them and we identify in convergence terms when a convergence space coincides with a convergence class. We examine the basic operators in the Vienna Development Method of formal systems development, namely, extension, glueing, restriction, removal and override, from the perspective of the Logic for C
33#
發(fā)表于 2025-3-27 08:07:08 | 只看該作者
Joakim Holmlund,Bj?rn Nilsson,Johan R?nnbythe Scott topology simply as cl. (↓. ∩ ↓.) = ↓. whenever . ≤ ∨ .. Since the meet operator is not involved, the topological property of meet-continuity can be naturally extended to general dcpos. Such dcpos are also called meet-continuous in this note. It turns out that there exist close relations am
34#
發(fā)表于 2025-3-27 10:34:12 | 只看該作者
35#
發(fā)表于 2025-3-27 14:26:58 | 只看該作者
Roland Bloch,Alexander Mitterle,Tobias Peter in this paper. It is proved that the regular projective quantales are weakly multiplication-stable completely distributive lattices and multiplication-stable completely distributive lattices are regular projective quantales. For the class . of all onto quantale homomorphisms whose right adjoints pr
36#
發(fā)表于 2025-3-27 18:53:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:19:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:36:32 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:26 | 只看該作者
40#
發(fā)表于 2025-3-28 12:21:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 咸阳市| 高安市| 呈贡县| 景泰县| 怀柔区| 招远市| 长海县| 吉林市| 中西区| 罗江县| 德惠市| 碌曲县| 义马市| 临安市| 夹江县| 准格尔旗| 伊宁县| 荆州市| 临海市| 博客| 金华市| 望城县| 开远市| 浦北县| 五河县| 定兴县| 闽侯县| 巫山县| 通州区| 阿拉善盟| 舟曲县| 永嘉县| 剑川县| 靖边县| 湖南省| 乐至县| 固安县| 兴安盟| 桦川县| 柘荣县|