找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XX; Randolph Bank,Michael Holst,Jinchao Xu Conference proceedings 2013 Springer-Ve

[復(fù)制鏈接]
樓主: LANK
31#
發(fā)表于 2025-3-27 01:00:50 | 只看該作者
Mesh Regularization in Bank-Holst Parallel ,-Adaptive MeshingIn this work, we study mesh regularization in Bank-Holst parallel adaptive paradigm when adaptive enrichment in both . (geometry) and . (degree) is used. The paradigm was first introduced by Bank and Holst in [1–3] and later extended to .-adaptivity in [5]. In short, the paradigm can be summarized in the following steps.
32#
發(fā)表于 2025-3-27 03:55:18 | 只看該作者
33#
發(fā)表于 2025-3-27 07:22:02 | 只看該作者
Multigrid Methods for the Biharmonic Problem with Cahn-Hilliard Boundary ConditionsLet . be a bounded polygonal domain, . and .
34#
發(fā)表于 2025-3-27 12:14:43 | 只看該作者
35#
發(fā)表于 2025-3-27 16:31:04 | 只看該作者
Shifted Laplacian RAS Solvers for the Helmholtz EquationWe consider the Helmholtz equation: . where . is a bounded polygonal region in k., and the . correspond to subsets of . where the Dirichlet, Neumann and Sommerfeld boundary conditions are imposed.
36#
發(fā)表于 2025-3-27 18:29:18 | 只看該作者
Equidistribution and Optimal Approximation Classension. In recent years, mathematicians start to prove the convergence and optimal complexity of the adaptive procedure in multi-dimensions. D?rfler [11] first proved an error reduction in the energy norm for the Poisson equation provided the initial mesh is fine enough.
37#
發(fā)表于 2025-3-27 23:31:44 | 只看該作者
38#
發(fā)表于 2025-3-28 04:51:28 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:53 | 只看該作者
40#
發(fā)表于 2025-3-28 10:29:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 19:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五河县| 杭州市| 孝义市| 雷州市| 清涧县| 平潭县| 松江区| 文昌市| 启东市| 龙里县| 兴山县| 崇阳县| 抚顺县| 龙陵县| 宁城县| 长岛县| 九寨沟县| 孝昌县| 岢岚县| 开封市| 福清市| 祥云县| 右玉县| 岑溪市| 迁安市| 辛集市| 滕州市| 德安县| 壤塘县| 高尔夫| 长宁区| 丹江口市| 周口市| 和硕县| 电白县| 亳州市| 阳山县| 色达县| 衡东县| 富阳市| 鄢陵县|