找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XVII; Ulrich Langer,Marco Discacciati,Walter Zulehner Conference proceedings 2008

[復制鏈接]
樓主: 機會
11#
發(fā)表于 2025-3-23 12:21:44 | 只看該作者
Domain Decomposition Algorithms for Mortar Discretizations in complicated structures with highly non-uniform materials. The complexity of the mortar discretizations requires fast algorithms for solving the resulting linear systems. Several domain decomposition algorithms, that have been successfully applied to conforming finite element discretizations, hav
12#
發(fā)表于 2025-3-23 17:45:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:41 | 只看該作者
Domain Decomposition Preconditioner for Anisotropic Diffusiononers are based on a partitioning of the mesh in (., .)-plane into non-overlapping subdomains and on a special coarsening algorithm in each of the mesh layers. The condition number of the preconditioned matrix does not depend on the coefficients in the diffusion operator. Numerical experiments confi
14#
發(fā)表于 2025-3-24 01:27:16 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:15 | 只看該作者
16#
發(fā)表于 2025-3-24 09:18:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:21:01 | 只看該作者
Auxiliary Space AMG for H(curl) Problemsonstruct AMG (algebraic multigrid) methods had some success, see [10, 1, 6]. Exploiting available multilevel methods on auxiliary mesh for the same bilinear form led to efficient auxiliary mesh preconditioners to unstructured problems as shown in [7, 4]. A computationally more attractive approach wa
18#
發(fā)表于 2025-3-24 17:33:51 | 只看該作者
19#
發(fā)表于 2025-3-24 19:05:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:22 | 只看該作者
Scalable BETI for Variational Inequalitiesnal inequalities such as those describing the equilibrium of a system of bodies in mutual contact. They exploit classical results on the FETI and BETI domain decomposition methods for elliptic partial differential equations and our recent results on quadratic programming. The results of the numerica
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 19:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
古丈县| 林芝县| 上栗县| 天长市| 原阳县| 阜阳市| 淄博市| 阜新市| 华容县| 开远市| 湾仔区| 泌阳县| 剑阁县| 两当县| 永平县| 荥经县| 宜阳县| 大埔县| 怀宁县| 延边| 台前县| 江北区| 邻水| 安丘市| 信宜市| 莆田市| 城固县| 酉阳| 乡宁县| 平邑县| 瓮安县| 上栗县| 南木林县| 丰原市| 六安市| 如东县| 白银市| 清远市| 福建省| 安徽省| 古交市|