找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation in Computer Vision Applications; Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis

[復(fù)制鏈接]
查看: 16228|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:41:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Domain Adaptation in Computer Vision Applications
編輯Gabriela Csurka
視頻videohttp://file.papertrans.cn/283/282486/282486.mp4
概述The first book focused on domain adaptation for visual applications.Provides a comprehensive experimental study, highlighting the strengths and weaknesses of popular methods, and introducing new and m
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Domain Adaptation in Computer Vision Applications;  Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis
描述This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes..Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic se
出版日期Book 2017
關(guān)鍵詞Computer Vision; Visual Applications; Image Categorization; Pattern Recognition; Data Analytics; Unsuperv
版次1
doihttps://doi.org/10.1007/978-3-319-58347-1
isbn_softcover978-3-319-86383-2
isbn_ebook978-3-319-58347-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Domain Adaptation in Computer Vision Applications影響因子(影響力)




書目名稱Domain Adaptation in Computer Vision Applications影響因子(影響力)學(xué)科排名




書目名稱Domain Adaptation in Computer Vision Applications網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation in Computer Vision Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Adaptation in Computer Vision Applications被引頻次




書目名稱Domain Adaptation in Computer Vision Applications被引頻次學(xué)科排名




書目名稱Domain Adaptation in Computer Vision Applications年度引用




書目名稱Domain Adaptation in Computer Vision Applications年度引用學(xué)科排名




書目名稱Domain Adaptation in Computer Vision Applications讀者反饋




書目名稱Domain Adaptation in Computer Vision Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:09 | 只看該作者
Marcelo C. Borba,Daniel C. Oreygeneralization of any learning method trained on a specific dataset. At the same time, with the rapid development of deep learning architectures, the activation values of Convolutional Neural Networks (CNN) are emerging as reliable and robust image descriptors. In this chapter we propose to verify t
板凳
發(fā)表于 2025-3-22 01:21:09 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:31 | 只看該作者
Reem Ashour,Sara Aldhaheri,Yasmeen Abu-Kheilpace Alignment (SA). They are based on a mapping function which aligns the source subspace with the target one, so as to obtain a domain invariant feature space. The solution of the corresponding optimization problem can be obtained in closed form, leading to a simple to implement and fast algorithm
5#
發(fā)表于 2025-3-22 09:20:36 | 只看該作者
6#
發(fā)表于 2025-3-22 16:36:44 | 只看該作者
https://doi.org/10.1007/978-3-031-32037-8e the joint distribution of samples and labels . in the source domain is assumed to be different, but related to that of a target domain ., but labels . are not available for the target set. This is a problem of Transductive Transfer Learning. In contrast to other methodologies in this book, our met
7#
發(fā)表于 2025-3-22 19:55:10 | 只看該作者
https://doi.org/10.1007/978-3-031-32338-6the discrepancy between their distributions and build representations common to both target and source domains. In reality, such a simplifying assumption rarely holds, since source data are routinely a subject of legal and contractual constraints between data owners and data customers. Despite a lim
8#
發(fā)表于 2025-3-22 21:30:06 | 只看該作者
9#
發(fā)表于 2025-3-23 01:27:11 | 只看該作者
10#
發(fā)表于 2025-3-23 06:12:45 | 只看該作者
Elvia Giovanna Battaglia,Elisabetta Romautions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金坛市| 石门县| 石屏县| 迁西县| 奉贤区| 会理县| 云龙县| 柳州市| 年辖:市辖区| 曲周县| 方山县| 泽州县| 平南县| 竹山县| 张家界市| 阳江市| 五指山市| 瑞昌市| 杭锦后旗| 元朗区| 保康县| 射阳县| 娄烦县| 三原县| 囊谦县| 榆树市| 腾冲县| 望江县| 翁牛特旗| 华阴市| 慈溪市| 绍兴县| 湟中县| 镇平县| 永寿县| 平山县| 稻城县| 手游| 崇仁县| 鹤庆县| 丹巴县|