找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation for Visual Understanding; Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada

[復制鏈接]
查看: 47159|回復: 44
樓主
發(fā)表于 2025-3-21 17:46:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Adaptation for Visual Understanding
編輯Richa Singh,Mayank Vatsa,Nalini Ratha
視頻videohttp://file.papertrans.cn/283/282485/282485.mp4
概述Presents the latest research on domain adaptation for visual understanding.Provides perspectives from an international selection of authorities in the field.Reviews a variety of applications and techn
圖書封面Titlebook: Domain Adaptation for Visual Understanding;  Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada
描述.This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition..Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
出版日期Book 2020
關鍵詞Domain Adaptation; Machine Learning; Computer Vision; Representation Learning; Transfer Learning; Generat
版次1
doihttps://doi.org/10.1007/978-3-030-30671-7
isbn_softcover978-3-030-30673-1
isbn_ebook978-3-030-30671-7
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Domain Adaptation for Visual Understanding影響因子(影響力)




書目名稱Domain Adaptation for Visual Understanding影響因子(影響力)學科排名




書目名稱Domain Adaptation for Visual Understanding網絡公開度




書目名稱Domain Adaptation for Visual Understanding網絡公開度學科排名




書目名稱Domain Adaptation for Visual Understanding被引頻次




書目名稱Domain Adaptation for Visual Understanding被引頻次學科排名




書目名稱Domain Adaptation for Visual Understanding年度引用




書目名稱Domain Adaptation for Visual Understanding年度引用學科排名




書目名稱Domain Adaptation for Visual Understanding讀者反饋




書目名稱Domain Adaptation for Visual Understanding讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:09:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:04:39 | 只看該作者
Book 2020cy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
地板
發(fā)表于 2025-3-22 06:21:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:17 | 只看該作者
Multi-modal Conditional Feature Enhancement for Facial Action Unit Recognition,erformance. We apply our fusion method to the task of facial action unit?(AU) recognition by learning to enhance the thermal and visible feature representations. We compare our approach to other recent fusion schemes and demonstrate its effectiveness on the MMSE dataset by outperforming previous tec
6#
發(fā)表于 2025-3-22 14:47:51 | 只看該作者
sa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o978-3-030-30673-1978-3-030-30671-7
7#
發(fā)表于 2025-3-22 19:49:36 | 只看該作者
8#
發(fā)表于 2025-3-22 23:01:00 | 只看該作者
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning,fy an unlabeled “target” dataset by leveraging a labeled “source” dataset that comes from a slightly similar distribution. We propose metric-based adversarial discriminative domain adaptation?(M-ADDA) which performs two main steps. First, it uses a metric learning approach to train the source model
9#
發(fā)表于 2025-3-23 02:40:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
襄垣县| 水城县| 辽阳县| 平昌县| 石河子市| 海淀区| 江孜县| 霞浦县| 浦城县| 吴堡县| 公主岭市| 定安县| 井冈山市| 呼伦贝尔市| 辽源市| 察雅县| 梅河口市| 滁州市| 嘉黎县| 延边| 化德县| 巴马| 太仆寺旗| 延津县| 特克斯县| 岱山县| 漳浦县| 阳东县| 望城县| 盐池县| 平定县| 四平市| 运城市| 常州市| 通榆县| 兰西县| 太原市| 二连浩特市| 临海市| 海原县| 崇文区|