找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Second MICCAI Worksh Shadi Albarqouni,Spyridon B

[復(fù)制鏈接]
樓主: 矜持
31#
發(fā)表于 2025-3-26 23:58:17 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:57 | 只看該作者
Subhadeep Biswas,Ankurita Nath,Anjali Palious methods typically assume that multi-site data are sampled from the same distribution. Such an assumption may not hold in practice due to the data heterogeneity caused by different scanning parameters and subject populations in multiple imaging sites. Even though several deep domain adaptation m
33#
發(fā)表于 2025-3-27 07:37:38 | 只看該作者
34#
發(fā)表于 2025-3-27 12:14:09 | 只看該作者
Marc Lunkenheimer,Alexander H. Kracklauerge of images from different modalities has great clinical benefits. However, the generalization ability of deep networks on different modalities is challenging due to domain shift. In this work, we investigate the challenging unsupervised domain adaptation problem of cross-modality medical image seg
35#
發(fā)表于 2025-3-27 14:45:54 | 只看該作者
Mirna Leko ?imi?,Helena ?timac,Sendi De?eli?vised approaches by combining labelled and unlabelled data can offer a solution to data scarcity. An approach to semi-supervised learning relies on reconstruction objectives (as self-supervision objectives) that learns in a joint fashion suitable representations for the task. Here, we propose Anatom
36#
發(fā)表于 2025-3-27 17:57:41 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:02 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:26 | 只看該作者
Sehoon Kwon,Jaechun No,Sung-soon Park sites result in dramatic drops of CNN segmentation quality on unseen domains. Many of the recently proposed MRI domain adaptation methods operate with the last CNN layers to suppress domain shift. At the same time, the core manifestation of MRI variability is a considerable diversity of image inten
39#
發(fā)表于 2025-3-28 07:59:37 | 只看該作者
40#
發(fā)表于 2025-3-28 14:27:04 | 只看該作者
G. Gupta,R. Shrivastava,J. Khan,N. K. Singhant against nuisance factors is an open question. This is done by removing sensitive information from the learned representation. Such privacy-preserving representations are believed to be beneficial to some medical and federated learning applications. In this paper, a framework for learning invaria
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康乐县| 大新县| 石嘴山市| 永修县| 重庆市| 轮台县| 遵化市| 巩义市| 吉首市| 中阳县| 大新县| 巍山| 登封市| 久治县| 沂南县| 高碑店市| 香格里拉县| 永定县| 东城区| 阜阳市| 宾阳县| 乃东县| 泰来县| 东平县| 汕尾市| 天祝| 呼伦贝尔市| 潢川县| 广丰县| 石棉县| 芷江| 铁力市| 溧水县| 锦州市| 吉水县| 定远县| 额济纳旗| 于都县| 双峰县| 修武县| 九龙坡区|