找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperf; First MICCAI Worksho Qian Wang,Fausto

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 12:34:41 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:34 | 只看該作者
Temporal Consistency Objectives Regularize the Learning of Disentangled Representationsrove semi-supervised segmentation, especially when very few labelled data are available. Specifically, we show Dice increase of up?to 19% and 7% compared to supervised and semi-supervised approaches respectively on the ACDC dataset. Code is available at: ..
13#
發(fā)表于 2025-3-23 20:03:03 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:18 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:43 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:00 | 只看該作者
Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site T mechanism and dropout, while it does not increase parameters and computational costs, making it well-suited for small neuroimaging datasets. We evaluated our method on a challenging Traumatic Brain Injury (TBI) dataset collected from 13 sites, using labeled source data of only 14 . subjects. Experi
17#
發(fā)表于 2025-3-24 12:39:30 | 只看該作者
Improving Pathological Structure Segmentation via Transfer Learning Across Diseasesi-modal MRI samples with expert-derived lesion labels. We explore several transfer learning approaches to leverage the learned MS model for the task of multi-class brain tumor segmentation on the BraTS 2018 dataset. Our results indicate that adapting and fine-tuning the encoder and decoder of the ne
18#
發(fā)表于 2025-3-24 17:01:48 | 只看該作者
Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performancons. We also compared the localization and classification performance with and without image augmentation by using generated VIC images. Our results show that the model trained on IC and VIC images had the highest performance in both localization and classification. Therefore, VIC images are useful
19#
發(fā)表于 2025-3-24 21:46:56 | 只看該作者
Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagationhe public lumbar CT dataset. On the first dataset, WISS achieves distinct improvements with regard to two different backbones. For the second dataset, WISS achieves dice coefficients of . and . for mid-sagittal slices and 3D CT volumes, respectively, saving a lot of labeling costs and only sacrifici
20#
發(fā)表于 2025-3-24 23:45:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沿河| 白城市| 清远市| 北海市| 隆回县| 资兴市| 云浮市| 南乐县| 永和县| 宜君县| 津南区| 宁陕县| 余干县| 镇雄县| 吴江市| 汾西县| 天峨县| 木兰县| 墨竹工卡县| 彭水| 邛崃市| 义马市| 正宁县| 个旧市| 杭州市| 双流县| 扶绥县| 泸定县| 突泉县| 宁都县| 乌鲁木齐市| 凤冈县| 墨江| 彰武县| 余庆县| 张家界市| 拜泉县| 德安县| 丹凤县| 辛集市| 都昌县|