找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:52:36 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:59 | 只看該作者
Paula Kasares,Ane Ortega,Estibaliz Amorrortuition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
43#
發(fā)表于 2025-3-28 23:57:09 | 只看該作者
44#
發(fā)表于 2025-3-29 04:57:04 | 只看該作者
Karel van Hulle,Leo van der Tasents..The evaluations were carried out on the KABOOM-ONOMATOPOEIA dataset and show the relevance of our method in comparison with methods of the literature, which makes it a promising tool in the field of scene text detection.
45#
發(fā)表于 2025-3-29 09:38:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:11:03 | 只看該作者
Document Analysis and Recognition – ICDAR 2023 WorkshopsSan José, CA, USA, A
47#
發(fā)表于 2025-3-29 15:52:02 | 只看該作者
Beyond Human Forgeries: An Investigation into?Detecting Diffusion-Generated Handwritingn methods. Our experiments indicate that the strongest discriminative features do not come from generation artifacts, letter shapes, or the generative model’s architecture, but instead originate from real-world artifacts in genuine handwriting that are not reproduced by generative methods.
48#
發(fā)表于 2025-3-29 20:27:46 | 只看該作者
Leveraging Large Language Models for?Topic Classification in?the?Domain of?Public Affairstokens. Our experiments assess the performance of 4 different Spanish LLMs to classify up to 30 different topics in the data in different configurations. The results shows that LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.
49#
發(fā)表于 2025-3-30 00:22:57 | 只看該作者
Using GANs for?Domain Adaptive High Resolution Synthetic Document Generationbased) represented a preliminary step towards the generation of realistic document images, it was impeded by its incapacity to produce high-resolution outputs. Our research aims to overcome this restriction, enhancing the DocSynth model’s capacity to generate high-resolution document images. Additio
50#
發(fā)表于 2025-3-30 06:39:17 | 只看該作者
A Survey and?Approach to?Chart Classificationition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 叙永县| 从江县| 江达县| 奉节县| 临夏市| 运城市| 田林县| 宕昌县| 老河口市| 乐山市| 盘山县| 故城县| 会理县| 瑞昌市| 峨眉山市| 宕昌县| 溧水县| 筠连县| 铁岭市| 康定县| 东方市| 商南县| 察哈| 肥东县| 宁城县| 香河县| 璧山县| 呼伦贝尔市| 图们市| 洛扎县| 连南| 遂昌县| 太康县| 陆良县| 高青县| 石柱| 赣榆县| 布拖县| 白水县| 本溪市|