找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[復制鏈接]
樓主: LEVEE
41#
發(fā)表于 2025-3-28 15:39:06 | 只看該作者
42#
發(fā)表于 2025-3-28 20:55:37 | 只看該作者
43#
發(fā)表于 2025-3-29 00:08:30 | 只看該作者
Electron Holography: AlAs/GaAs Superlatticesgnition, is ligatures. A combination of a specific two or more character sequence takes a different shape than what those characters normally look like when they appear in a similar position. Deep learning-based systems are widely used for text recognition these days. In this work, we investigate th
44#
發(fā)表于 2025-3-29 05:25:09 | 只看該作者
Hugh Rudnick,Constantin Velásquezble performance in addressing the task; however, most of these approaches rely on vast amounts of data from large-scale knowledge graphs or language models pretrained on voluminous corpora. In this paper, we hone in on the effective utilization of solely the knowledge supplied by a corpus to create
45#
發(fā)表于 2025-3-29 10:47:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:11 | 只看該作者
Hugh Rudnick,Constantin Velásquezwas not left behind with first Transformer based models for DU dating from late 2019. However, the computational complexity of the self-attention operation limits their capabilities to small sequences. In this paper we explore multiple strategies to apply Transformer based models to long multi-page
47#
發(fā)表于 2025-3-29 18:47:18 | 只看該作者
Final-drive/Differential and Axle Shafts,e-art results. In this paper, we propose KAP a pre-trained model adapted for the domain specificity for corporate documents. KAP takes into account the domain specificity of corporate documents and proposes a model that integrates the local context of each word (i.e the words at the top, bottom, and
48#
發(fā)表于 2025-3-29 22:58:14 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:27 | 只看該作者
50#
發(fā)表于 2025-3-30 07:25:48 | 只看該作者
Macmillan Motor Vehicle Engineering Seriess always a challenging task. On the other hand, large volumes of public training datasets related to administrative documents such as invoices are rare to find. In this work, we use Graph Attention Network model for information extraction. This type of model makes it easier to understand the mechani
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武义县| 宜兴市| 克拉玛依市| 韶关市| 常宁市| 潍坊市| 即墨市| 灵丘县| 贡山| 沭阳县| 尤溪县| 嘉禾县| 呼图壁县| 山阴县| 卢龙县| 武乡县| 北流市| 郧西县| 安吉县| 高邑县| 正宁县| 新龙县| 全州县| 宁国市| 古浪县| 湘乡市| 哈巴河县| 江西省| 东方市| 清原| 施甸县| 利辛县| 敦煌市| 崇仁县| 琼中| 商城县| 和政县| 确山县| 宁远县| 象州县| 安龙县|