找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:39:25 | 只看該作者
SynthTIGER: Synthetic Text Image GEneratoR Towards Better Text Recognition Models the combination of synthetic datasets, MJSynth (MJ) and SynthText (ST). Our ablation study demonstrates the benefits of using sub-components of SynthTIGER and the guideline on generating synthetic text images for STR models. Our implementation is publicly available at ..
42#
發(fā)表于 2025-3-28 19:28:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:17:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:05:06 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:14 | 只看該作者
46#
發(fā)表于 2025-3-29 14:08:49 | 只看該作者
47#
發(fā)表于 2025-3-29 19:27:55 | 只看該作者
Fast Text vs. Non-text Classification of Imagess, as encountered in social networks, for detection and recognition of scene text. The proposed classifier efficiently removes non-text images from consideration, thus allowing to apply the potentially computationally heavy scene text detection and OCR on only a fraction of the images..The proposed
48#
發(fā)表于 2025-3-29 22:33:33 | 只看該作者
Mask Scene Text Recognizer a supervised learning task of predicting text image mask into a CNN (convolutional neural network)-Transformer framework for scene text recognition. The incorporated mask predicting branch is connected in parallel with the CNN backbone, and the predicted mask is used as attention weights for the fe
49#
發(fā)表于 2025-3-30 03:29:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:04:55 | 只看該作者
Heterogeneous Network Based Semi-supervised Learning for Scene Text?Recognitionbased on abundant labeled data for model training. Obtaining text images is a relatively easy process, but labeling them is quite expensive. To alleviate the dependence on labeled data, semi-supervised learning which combines labeled and unlabeled data seems to be a reasonable solution, and is prove
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
易门县| 宝坻区| 遵化市| 建阳市| 西安市| 会东县| 綦江县| 吉安市| 罗源县| 杭州市| 灵寿县| 子长县| 江达县| 车致| 石河子市| 台南县| 县级市| 永春县| 汽车| 治县。| 遵化市| 柘城县| 吴忠市| 安福县| 微博| 揭东县| 冀州市| 乌兰察布市| 牟定县| 砀山县| 广东省| 吴旗县| 双江| 建瓯市| 浦县| 红河县| 嘉黎县| 鲜城| 宕昌县| 青田县| 渝北区|