找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis Systems VI; 6th International Wo Simone Marinai,Andreas R. Dengel Conference proceedings 2004 Springer-Verlag GmbH German

[復(fù)制鏈接]
樓主: 決絕
31#
發(fā)表于 2025-3-27 01:02:07 | 只看該作者
0302-9743 held during September 8–10, 2004 at the University of Florence, Italy. Several papers represent the state of the art in a broad range of “traditional” topics such as layout analysis, applications to graphics recognition, and handwritten documents. Other contributions address the description of comp
32#
發(fā)表于 2025-3-27 04:41:31 | 只看該作者
https://doi.org/10.1057/9781403905390cify, in considerable detail, the essential features of document analysis systems that can assist in: (a)?the creation of DL’s; (b)?automatic indexing and retrieval of doc-images within DL’s; (c)?the presentation of doc-images to DL users; (d)?navigation within and among doc-images in DL’s; and (e)?effective use of personal and interactive DL’s.
33#
發(fā)表于 2025-3-27 06:11:15 | 只看該作者
https://doi.org/10.1007/978-3-658-12012-2ethod, the Kohonen map is trained to generate a set of test vectors that will train in a supervised manner a classical feed-forward network. The testing step consists then in classifying each pixel into one class out of four by feeding directly the feed forward network. The pixels belonging to the transparency class are then removed.
34#
發(fā)表于 2025-3-27 12:01:35 | 只看該作者
Baek Buhm-Suk,Lisa Collins,Kim Yuri-based method is proposed for multi-component document image coding, where rectangular textual ROI’s are easily extracted using standard document image analysis techniques. Compared to multi-layer methods, the method is simpler and scalable, while preserving comparable visual quality at equivalent PSNR.
35#
發(fā)表于 2025-3-27 17:15:30 | 只看該作者
36#
發(fā)表于 2025-3-27 21:05:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:39:11 | 只看該作者
38#
發(fā)表于 2025-3-28 03:03:12 | 只看該作者
Self-organizing Maps and Ancient Documentsethod, the Kohonen map is trained to generate a set of test vectors that will train in a supervised manner a classical feed-forward network. The testing step consists then in classifying each pixel into one class out of four by feeding directly the feed forward network. The pixels belonging to the transparency class are then removed.
39#
發(fā)表于 2025-3-28 09:57:19 | 只看該作者
Multi-component Document Image Coding Using Regions-of-Interest-based method is proposed for multi-component document image coding, where rectangular textual ROI’s are easily extracted using standard document image analysis techniques. Compared to multi-layer methods, the method is simpler and scalable, while preserving comparable visual quality at equivalent PSNR.
40#
發(fā)表于 2025-3-28 12:33:58 | 只看該作者
Physical Layout Analysis of Complex Structured Arabic Documents Using Artificial Neural Nets tested on five different phases of newspaper image analysis: thread recognition, frame recognition, image text separation, text line recognition and line merging into blocks. The learning capability has been tested on line merging into blocks. Some promising experimental results are reported.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄江县| 甘孜县| 安顺市| 玉树县| 罗田县| 英山县| 汾西县| 宾川县| 运城市| 娄底市| 佛教| 珠海市| 运城市| 夏邑县| 邮箱| 阆中市| 交城县| 中江县| 邮箱| 黎川县| 太湖县| 民勤县| 临高县| 萨嘎县| 佛山市| 伽师县| 江西省| 乐业县| 恩平市| 蒙自县| 台湾省| 万宁市| 忻州市| 渝北区| 攀枝花市| 神农架林区| 宣威市| 高要市| 闽侯县| 庐江县| 阳西县|