找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis Systems; 14th IAPR Internatio Xiang Bai,Dimosthenis Karatzas,Daniel Lopresti Conference proceedings 2020 Springer Nature

[復(fù)制鏈接]
樓主: Sediment
51#
發(fā)表于 2025-3-30 08:26:24 | 只看該作者
52#
發(fā)表于 2025-3-30 15:31:05 | 只看該作者
Shinichi Ichimura,Tsuneaki Satoical character recognition (OCR) performance prior to any actual recognition, but also provides immediate feedback on whether the documents meet the quality requirements for other high level document processing and analysis tasks. In this work, we present a deep neural network (DNN) to accomplish th
53#
發(fā)表于 2025-3-30 20:18:15 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windts work we focus on decorated background removal and the extraction of textual components from French university diploma. As far as we know, this is the very first attempt to resolve this kind of problem on French university diploma images. Hence, we make our dataset public for further research, rela
54#
發(fā)表于 2025-3-30 21:24:42 | 只看該作者
Transition in Central and Eastern Europeon is a key step in table understanding. Nowadays, the most successful methods for table detection in document images employ deep learning algorithms; and, particularly, a technique known as .. In this context, such a technique exports the knowledge acquired to detect objects in natural images to de
55#
發(fā)表于 2025-3-31 03:00:30 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windtmanually annotating the bounding boxes of graphical or page objects in publicly available annual reports. This dataset contains a total of 13. annotated page images with objects in five different popular categories—table, figure, natural image, logo, and signature. It is the largest manually annotat
56#
發(fā)表于 2025-3-31 08:43:29 | 只看該作者
57#
發(fā)表于 2025-3-31 12:27:24 | 只看該作者
Maximum Entropy Regularization and Chinese Text Recognitionlasses, which causes a serious overfitting problem. We propose to apply Maximum Entropy Regularization to regularize the training process, which is to simply add a negative entropy term to the canonical cross-entropy loss without any additional parameters and modification of a model. We theoreticall
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 00:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 岳池县| 青冈县| 梅河口市| 怀仁县| 安徽省| 鲁甸县| 黄浦区| 湟中县| 米易县| 土默特左旗| 柳河县| 老河口市| 合作市| 永川市| 东阳市| 韶关市| 和政县| 旬阳县| 岱山县| 仙桃市| 万盛区| 勐海县| 鄯善县| 清苑县| 高青县| 平湖市| 厦门市| 双鸭山市| 宁乡县| 彝良县| 获嘉县| 溆浦县| 阳山县| 清涧县| 福海县| 酉阳| 罗城| 靖边县| 枣庄市| 壶关县|