找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis Systems; 14th IAPR Internatio Xiang Bai,Dimosthenis Karatzas,Daniel Lopresti Conference proceedings 2020 Springer Nature

[復(fù)制鏈接]
樓主: Sediment
11#
發(fā)表于 2025-3-23 12:09:02 | 只看該作者
12#
發(fā)表于 2025-3-23 14:06:15 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windtd. So, we propose an approach for the separation of textual and non-textual components, based on Fuzzy C-Means clustering. After obtaining clustered pixels, a local window based thresholding approach and the Savoula binarization technique is used to correctly classify pixels, into the category of te
13#
發(fā)表于 2025-3-23 21:49:14 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:29 | 只看該作者
Arie Kuyvenhoven,Olga Memedovic,Nico Windtdetection in both business documents and technical articles. By training with .-13., we demonstrate the feasibility of a single solution that can report superior performance compared to the equivalent ones trained with a much larger amount of data, for table detection. We hope that our dataset helps
15#
發(fā)表于 2025-3-24 05:18:06 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:45 | 只看該作者
https://doi.org/10.1007/978-3-319-14042-1 Besides, it is worth mentioning that this module does not have any trainable parameters. Experiments conducted on the ICDAR 2019 ReCTS competition dataset demonstrate that our approach significantly outperforms the state-of-the-art techniques. In addition, we also verify the generalization performance of our method on the CTW dataset.
17#
發(fā)表于 2025-3-24 11:18:09 | 只看該作者
Approach to the Adult Hypospadias Patientii) Fine Tuning?+?Self Training. We discuss details on how these popular approaches in Machine Learning can be adapted to the text recognition problem of our interest. We hope, our empirical observations on two different languages will be of relevance to wider use cases in text recognition.
18#
發(fā)表于 2025-3-24 15:34:30 | 只看該作者
Th. Mayer,K. Fritzsche,S. Weiss,M. T. Lutzents (image and text), which performs better than other popular self-supervised methods, including supervised ImageNet pre-training, on document image classification scenarios with a limited amount of data.
19#
發(fā)表于 2025-3-24 22:56:58 | 只看該作者
Funktionelle neurologische St?rungenents, we point out the problems caused by the use of SE-blocks in existing CMU-Nets and suggest how to use SE-blocks in CMU-Nets. We use the Document Image Binarization?(DIBCO) 2017 dataset to evaluate the proposed model.
20#
發(fā)表于 2025-3-25 00:13:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博兴县| 武威市| 榕江县| 祁连县| 楚雄市| 呼图壁县| 宝山区| 通渭县| 大竹县| 安岳县| 晋城| 黔西县| 隆安县| 沅江市| 商水县| 安吉县| 库伦旗| 桃源县| 庐江县| 彰化市| 曲麻莱县| 贵州省| 阜阳市| 昆明市| 惠安县| 连云港市| 顺义区| 长丰县| 隆昌县| 沁水县| 阿克| 淳安县| 西乌珠穆沁旗| 四会市| 五原县| 木里| 项城市| 武城县| 长武县| 土默特左旗| 石嘴山市|