找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence I; Monodromy and Resurg Claude Mitschi,David Sauzin Book 2016 Springer International Publishin

[復制鏈接]
樓主: cessation
11#
發(fā)表于 2025-3-23 11:52:32 | 只看該作者
F. Schm?l,M. Nieschalk,E. Nessel,W. StollIn this chapter we show how differential Galois groups are related to monodromy. To learn about differential Galois theory we refer to the following authors: Crespo and Hajto [CH11], Kaplansky [Kap76], Magid [Mag94], Kolchin[Kol76] , van der Put and Singer [PSi01], Singer ([Sin99], [Sin09]).
12#
發(fā)表于 2025-3-23 14:12:14 | 只看該作者
F. Schm?l,M. Nieschalk,E. Nessel,W. StollWe are now able to state the . of characterizing those groups that can be realized as the monodromy group or the differential Galois group of some differential system, although an effective construction of such systems remains a difficult problem.
13#
發(fā)表于 2025-3-23 20:25:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:14 | 只看該作者
https://doi.org/10.1007/978-3-642-18927-2At the beginning of the second volume of his New methods of celestial mechanics [Poi87], H. Poincar′e dedicates two pages to elucidating “a kind of misunderstanding between geometers and astronomers about the meaning of the word convergence”.
15#
發(fā)表于 2025-3-24 03:44:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:00:21 | 只看該作者
Differential Galois TheoryIn this chapter we show how differential Galois groups are related to monodromy. To learn about differential Galois theory we refer to the following authors: Crespo and Hajto [CH11], Kaplansky [Kap76], Magid [Mag94], Kolchin[Kol76] , van der Put and Singer [PSi01], Singer ([Sin99], [Sin09]).
17#
發(fā)表于 2025-3-24 12:53:01 | 只看該作者
Inverse ProblemsWe are now able to state the . of characterizing those groups that can be realized as the monodromy group or the differential Galois group of some differential system, although an effective construction of such systems remains a difficult problem.
18#
發(fā)表于 2025-3-24 15:02:55 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:49 | 只看該作者
20#
發(fā)表于 2025-3-25 01:43:02 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-31 00:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三明市| 翁牛特旗| 桑植县| 云和县| 衡阳县| 黄浦区| 沈阳市| 琼结县| 镇安县| 镇江市| 丰都县| 辽阳县| 云南省| 治县。| 时尚| 庆元县| 岳池县| 福建省| 怀柔区| 青河县| 三门峡市| 章丘市| 嘉黎县| 尚义县| 丰城市| 新乡县| 华宁县| 山东| 海原县| 普兰店市| 菏泽市| 竹溪县| 双峰县| 青川县| 略阳县| 平安县| 乌鲁木齐县| 修武县| 江津市| 茶陵县| 舟山市|