找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Computing in Big Data Analytics; Concepts, Technologi Sourav Mazumder,Robin Singh Bhadoria,Ganesh Chandr Book 2017 Springer Int

[復(fù)制鏈接]
樓主: 熱情美女
21#
發(fā)表于 2025-3-25 06:20:16 | 只看該作者
Distributed Computing Patterns Useful in Big Data Analytics,Analytics applications. This Chapter discusses basic patterns of distributed systems, those abstract these concepts and can be used in homogeneous, heterogeneous or hybrid environments of Big Data Analytics implementations.
22#
發(fā)表于 2025-3-25 09:52:50 | 只看該作者
Fundamental Concepts of Distributed Computing Used in Big Data Analytics,ay in various businesses and industries. So it is essential for practitioners of Big Data Analytics to understand these fundamental concepts related to Distributed Computing. In this chapter we cover these fundamental concepts of Distributed Computing along with the Quality of Service aspects associated with them with examples wherever applicable.
23#
發(fā)表于 2025-3-25 12:29:52 | 只看該作者
24#
發(fā)表于 2025-3-25 19:06:06 | 只看該作者
Book 2017making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make b
25#
發(fā)表于 2025-3-25 22:34:06 | 只看該作者
On the Role of Distributed Computing in Big Data Analytics, of data. The explosion of devices that have automated and perhaps improved the lives of all of us has generated a huge mass of information that will continue to grow exponentially. For this reason, the need to store, manage, and treat the ever increasing amounts of data has become urgent. The chall
26#
發(fā)表于 2025-3-26 02:25:57 | 只看該作者
27#
發(fā)表于 2025-3-26 05:42:40 | 只看該作者
28#
發(fā)表于 2025-3-26 10:59:01 | 只看該作者
Distributed Computing Technologies in Big Data Analytics,dapted to create a new class of distributed computing platform and software components that make the big data analytics easier to implement. In this chapter, we discuss few of these technologies. First, we discuss the distributed database technology and how this technology has been adapted to develo
29#
發(fā)表于 2025-3-26 15:42:41 | 只看該作者
30#
發(fā)表于 2025-3-26 17:20:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 14:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 繁昌县| 山阳县| 上蔡县| 永修县| 公安县| 青冈县| 灵宝市| 祁门县| 班戈县| 宜兰县| 江孜县| 龙江县| 韩城市| 绥化市| 红原县| 文化| 建平县| 塔城市| 南乐县| 滦南县| 慈利县| 且末县| 邳州市| 韩城市| 六枝特区| 衢州市| 开远市| 冀州市| 蓬溪县| 安顺市| 邵阳县| 雅安市| 江孜县| 潮州市| 平武县| 三明市| 岳阳市| 会理县| 海晏县| 陕西省|