找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Computing in Big Data Analytics; Concepts, Technologi Sourav Mazumder,Robin Singh Bhadoria,Ganesh Chandr Book 2017 Springer Int

[復(fù)制鏈接]
查看: 36230|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:43:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Distributed Computing in Big Data Analytics
副標(biāo)題Concepts, Technologi
編輯Sourav Mazumder,Robin Singh Bhadoria,Ganesh Chandr
視頻videohttp://file.papertrans.cn/282/281859/281859.mp4
概述Addresses key concepts and patterns of distributed computing to provide practitioners with insight while designing big data analytics use cases.Details how different big data technologies leverage tho
叢書名稱Scalable Computing and Communications
圖書封面Titlebook: Distributed Computing in Big Data Analytics; Concepts, Technologi Sourav Mazumder,Robin Singh Bhadoria,Ganesh Chandr Book 2017 Springer Int
描述.Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use..This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principle
出版日期Book 2017
關(guān)鍵詞Distributed computing; Cognitive analytics; Internet of things; Social media analytics; Scientific data
版次1
doihttps://doi.org/10.1007/978-3-319-59834-5
isbn_softcover978-3-319-86713-7
isbn_ebook978-3-319-59834-5Series ISSN 2520-8632 Series E-ISSN 2364-9496
issn_series 2520-8632
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Distributed Computing in Big Data Analytics影響因子(影響力)




書目名稱Distributed Computing in Big Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Distributed Computing in Big Data Analytics網(wǎng)絡(luò)公開度




書目名稱Distributed Computing in Big Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Distributed Computing in Big Data Analytics被引頻次




書目名稱Distributed Computing in Big Data Analytics被引頻次學(xué)科排名




書目名稱Distributed Computing in Big Data Analytics年度引用




書目名稱Distributed Computing in Big Data Analytics年度引用學(xué)科排名




書目名稱Distributed Computing in Big Data Analytics讀者反饋




書目名稱Distributed Computing in Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:17 | 只看該作者
Why Elizabeth Never Left EnglandThose concepts are used in various Big Data Technologies of present time, which are in turn the key building blocks of the Big Data Analytics used today in various businesses and industries. So it is essential for practitioners of Big Data Analytics to understand these fundamental concepts related t
板凳
發(fā)表于 2025-3-22 00:58:55 | 只看該作者
Time Study and Methods Improvementing models, system architectures, and platforms for the development of distributed systems. Several Big Data frameworks of today implement these concepts of distributed system for data synchronization, message exchange, real time data processing and transaction control in architectures for Big Data
地板
發(fā)表于 2025-3-22 05:37:27 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:57:27 | 只看該作者
Wage Payment Plans and Incentivese, nonlinear and non-stationary in their dynamics. Solutions to these problems often necessitate the use of complex mathematical modeling, simulation and analysis which are traditionally achieved by the use of expensive high performance computing, more commonly known as Super-Computers. In this chap
7#
發(fā)表于 2025-3-22 17:24:27 | 只看該作者
https://doi.org/10.1007/978-3-030-00163-6 industries such as travel and transport. However, in last year or two this phrase has gone viral across various business industries with experts predicting that the cognitive systems will play a very vital role in next generation of computing in general and especially in Big Data Analytics. In this
8#
發(fā)表于 2025-3-23 00:49:49 | 只看該作者
Alberto M. Goldwaser,Eric L. Goldwaserctively use social media today. This abrupt societal transition has led to a dramatic increase in the extent to which a person’s social footprint is documented online in the public domain. While for some social media sites, like Snapchat and Facebook, privacy is a key feature, on sites like Twitter,
9#
發(fā)表于 2025-3-23 01:58:41 | 只看該作者
10#
發(fā)表于 2025-3-23 09:16:04 | 只看該作者
https://doi.org/10.1007/978-3-319-59834-5Distributed computing; Cognitive analytics; Internet of things; Social media analytics; Scientific data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 12:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞源县| 盱眙县| 都匀市| 平阳县| 息烽县| 壶关县| 乌兰察布市| 象州县| 桃园市| 罗甸县| 安陆市| 七台河市| 崇左市| 黄龙县| 韩城市| 图木舒克市| 鞍山市| 读书| 明星| 托里县| 古浪县| 广水市| 遂平县| 西藏| 缙云县| 长白| 金阳县| 增城市| 手机| 如东县| 宁武县| 甘肃省| 宁明县| 久治县| 安顺市| 五台县| 孝感市| 西充县| 霍山县| 抚州市| 定兴县|