找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:23:27 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:02 | 只看該作者
https://doi.org/10.1007/978-3-642-37747-1 each category the parameter sets are ordered by . (not .). We only list intersectiòn arrays that pass all feasibility criteria known to us. We do not give any information on the polygons (e.g., these have many .- and .-polynomial structures).
13#
發(fā)表于 2025-3-23 21:34:19 | 只看該作者
Graphs Related to Classical Geometries,aphs are distance-regular. In the last three sections we construct several infinite families of antipodal covers of complete graphs (starting from affine instead of projective points), and an infinite family of partial geometries yielding bipartite distance-regular graphs of diameter 4 (starting from complete arcs in a projective plane).
14#
發(fā)表于 2025-3-24 01:23:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:39 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:22 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:04 | 只看該作者
,Downsizing: Bill Clinton’s First Term,pter 8) and codes in graphs (Chapter 11). Multiplicity formulas (2.2.2) and bounds (2.3.3) as well as the Krein conditions (2.3.2) developed here in general context will recur for distance-regular graphs in Chapter 4.
18#
發(fā)表于 2025-3-24 16:26:13 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:33 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:05 | 只看該作者
W. E. Staas Jr.,H. M. Cioschi,B. Jacobs partition of . into cosets of ., we take an arbitrary partition Π of Γ, Now there is an obvious concept of quotient graph Γ / Π generalizing that of coset graph, and Theorem 11.1.6 gives a sufficient condition for this quotient graph to be distance-regular. Section 11.1 is the outgrowth of earlier discussions with A.R. Calderbank.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿迁市| 健康| 轮台县| 密云县| 遂宁市| 璧山县| 达拉特旗| 图们市| 雷波县| 梅河口市| 都江堰市| 宝山区| 宝坻区| 芜湖县| 修文县| 汝城县| 赣榆县| 岗巴县| 平江县| 高阳县| 绍兴县| 疏勒县| 海南省| 高密市| 青浦区| 扎赉特旗| 钟山县| 安平县| 文水县| 苗栗市| 修水县| 都昌县| 长岭县| 桓台县| 马山县| 视频| 吴江市| 镇巴县| 南宁市| 封开县| 博乐市|