找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:23:27 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:02 | 只看該作者
https://doi.org/10.1007/978-3-642-37747-1 each category the parameter sets are ordered by . (not .). We only list intersectiòn arrays that pass all feasibility criteria known to us. We do not give any information on the polygons (e.g., these have many .- and .-polynomial structures).
13#
發(fā)表于 2025-3-23 21:34:19 | 只看該作者
Graphs Related to Classical Geometries,aphs are distance-regular. In the last three sections we construct several infinite families of antipodal covers of complete graphs (starting from affine instead of projective points), and an infinite family of partial geometries yielding bipartite distance-regular graphs of diameter 4 (starting from complete arcs in a projective plane).
14#
發(fā)表于 2025-3-24 01:23:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:39 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:22 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:04 | 只看該作者
,Downsizing: Bill Clinton’s First Term,pter 8) and codes in graphs (Chapter 11). Multiplicity formulas (2.2.2) and bounds (2.3.3) as well as the Krein conditions (2.3.2) developed here in general context will recur for distance-regular graphs in Chapter 4.
18#
發(fā)表于 2025-3-24 16:26:13 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:33 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:05 | 只看該作者
W. E. Staas Jr.,H. M. Cioschi,B. Jacobs partition of . into cosets of ., we take an arbitrary partition Π of Γ, Now there is an obvious concept of quotient graph Γ / Π generalizing that of coset graph, and Theorem 11.1.6 gives a sufficient condition for this quotient graph to be distance-regular. Section 11.1 is the outgrowth of earlier discussions with A.R. Calderbank.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 阿拉善左旗| 连南| 台前县| 新巴尔虎左旗| 贵州省| 海丰县| 石楼县| 同德县| 宣威市| 灯塔市| 巴南区| 牙克石市| 台安县| 渭源县| 永兴县| 安达市| 镇远县| 大庆市| 茌平县| 清水河县| 景泰县| 名山县| 澜沧| 三明市| 彭州市| 陇南市| 手游| 永丰县| 白玉县| 华阴市| 紫云| 改则县| 丰宁| 恭城| 朝阳区| 噶尔县| 萨迦县| 进贤县| 自治县| 海兴县|