找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry; Volker Mayer,Mariusz Urbanski,Bartlomi

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 12:36:27 | 只看該作者
Expanding in the Mean, also hold for a class of random maps satisfying an allegedly weaker expanding condition . We start with a precise definition of this class. Then we explain how this case can be reduced to random expanding maps by looking at an appropriate induced map. The picture is completed by providing and discu
12#
發(fā)表于 2025-3-23 14:41:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:48:44 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:56 | 只看該作者
Volker Mayer,Mariusz Urbanski,Bartlomiej SkorulskiContains new results.Complete treatment of the topic.Originality of the topic.Includes supplementary material:
15#
發(fā)表于 2025-3-24 04:15:19 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/281664.jpg
16#
發(fā)表于 2025-3-24 09:45:28 | 只看該作者
The RPF-Theorem,thout any measurable structure on the space .. In particular, we do not address measurability issues of λ. and ... In order to obtain this measurability we will need and we will impose a natural measurable structure on the space .. This will be done in the next chapter.
17#
發(fā)表于 2025-3-24 11:07:52 | 只看該作者
Real Analyticity of Pressure,6.3). We putted this part at the end of the manuscript since, as already mentioned, it is of different nature. It is heavily based on ideas of Rugh [26] and uses the Hilbert metric on appropriately chosen cones.
18#
發(fā)表于 2025-3-24 15:44:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:14:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 台南市| 宜良县| 玉林市| 杭锦旗| 来宾市| 龙海市| 宁都县| 平顺县| 文山县| 盖州市| 全椒县| 措美县| 中西区| 文成县| 蕉岭县| 恩平市| 辽宁省| 汶上县| 土默特右旗| 焉耆| 永兴县| 新宁县| 兴义市| 牟定县| 泸溪县| 分宜县| 牡丹江市| 绥化市| 富川| 柞水县| 吉安县| 萨嘎县| 楚雄市| 江源县| 昌吉市| 鹰潭市| 长垣县| 太仆寺旗| 延寿县| 平湖市|