找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Disjunctive Programming; Egon Balas Book 2018 Springer Nature Switzerland AG 2018 optimization.integer programming.nonconvex programming.l

[復(fù)制鏈接]
樓主: Conjecture
21#
發(fā)表于 2025-3-25 05:27:28 | 只看該作者
Nonlinear Higher-Dimensional Representations,Apart from the extended formulations discussed in Chap. 5, a number of authors have proposed nonlinear higher dimensional constructions that provide tighter relaxations of conv...
22#
發(fā)表于 2025-3-25 10:15:43 | 只看該作者
The Correspondence Between Lift-and-Project Cuts and Simple Disjunctive Cuts,From the fact that the constraint set (6.3) of (CGLP). defines the convex hull of .?∩{.?:?..?∈{0, 1}}, and that conv.., the integer hull, can be derived by imposing the disjunctions ..?≤?0?∨?..?≥?1 sequentially, it follows that any valid cut for a mixed 0-1 program can be represented as a lift-and-project cut.
23#
發(fā)表于 2025-3-25 12:56:42 | 只看該作者
Solving (CGLP), on the LP Simplex Tableau,The major practical consequence of the correspondence established in Theorems 8.4A/8.4B is that the cut generating linear program (CGLP). need not be formulated and solved explicitly; instead, the procedure for solving it can be mimicked on the linear programming relaxation (LP) of the original mixed 0-1 problem.
24#
發(fā)表于 2025-3-25 16:43:47 | 只看該作者
Implementation and Testing of Variants,The discovery of the possibility of generating L&P cuts through pivoting in the LP tableau, without recourse to the higher-dimensional (CGLP), has opened the door to the introduction of this class of cuts into commercial optimizers
25#
發(fā)表于 2025-3-25 20:50:16 | 只看該作者
Cuts from General Disjunctions,In the early years of the twenty-first century the topic of cutting planes from split disjunctions seemed to have been exhausted, and attention turned to cuts from more general (non-split) disjunctions.
26#
發(fā)表于 2025-3-26 03:49:58 | 只看該作者
Disjunctive Cuts from the , -Polyhedral Representation,Given a disjunctive set in disjunctive normal form, i.e. as a union of polyhedra.
27#
發(fā)表于 2025-3-26 07:09:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:36 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:41 | 只看該作者
Egon BalasThe first and so far only book on this important subject.Written in a style accessible to all mathematically literate readers.The author is a famous expert in mathematical optimisation
30#
發(fā)表于 2025-3-26 19:35:12 | 只看該作者
http://image.papertrans.cn/e/image/281348.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连云港市| 民权县| 普陀区| 沿河| 民权县| 龙游县| 敦化市| 芜湖县| 乌拉特中旗| 光山县| 益阳市| 绥滨县| 怀仁县| 南郑县| 额敏县| 内江市| 郯城县| 山西省| 四平市| 波密县| 牡丹江市| 利辛县| 东乡县| 永春县| 武邑县| 芦山县| 磴口县| 色达县| 延吉市| 延寿县| 高州市| 鞍山市| 江川县| 湖南省| 兴义市| 厦门市| 信宜市| 祁东县| 开江县| 梨树县| 民和|