找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復(fù)制鏈接]
樓主: Iodine
41#
發(fā)表于 2025-3-28 15:23:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:03:51 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recogn
43#
發(fā)表于 2025-3-29 01:55:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:49:42 | 只看該作者
Karembe F. Ahimbisibwe,Tiina Kontinenes with several representative methods of discriminative learning for biometric recognition. The ideas, algorithms, experimental evaluation, and underlying rationales are also provided for the better understanding of these methods. In this chapter, we will give a further discussion about the book an
45#
發(fā)表于 2025-3-29 08:48:30 | 只看該作者
https://doi.org/10.1007/978-981-19-4859-6esent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the triplet-SVM, are also introduced in this chapter.
46#
發(fā)表于 2025-3-29 11:45:52 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recognition.
47#
發(fā)表于 2025-3-29 18:09:41 | 只看該作者
David Zhang,Yong Xu,Wangmeng ZuoSummarizes the latest studies on discriminative learning methods and their applications to biometric recognition.Covers different biometric recognition technologies, including face recognition, palmpr
48#
發(fā)表于 2025-3-29 22:12:59 | 只看該作者
http://image.papertrans.cn/e/image/281228.jpg
49#
發(fā)表于 2025-3-30 03:01:48 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:20:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌市| 田阳县| 任丘市| 沙田区| 昌江| 永胜县| 德兴市| 四子王旗| 长沙县| 额敏县| 康保县| 临颍县| 措勤县| 舟曲县| 漠河县| 侯马市| 奉节县| 恭城| 田东县| 黄龙县| 嵩明县| 尉氏县| 崇阳县| 亳州市| 深水埗区| 阿荣旗| 柯坪县| 瑞金市| 温泉县| 大关县| 苏尼特左旗| 龙门县| 随州市| 晴隆县| 柏乡县| 菏泽市| 揭西县| 镇巴县| 镇雄县| 都江堰市| 巍山|