找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[復制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 06:14:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:13:04 | 只看該作者
Discriminative Learning: A Unified objective Function,HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
23#
發(fā)表于 2025-3-25 14:39:03 | 只看該作者
Discriminative Learning Algorithm for Exponential-Family Distributions,design where each class is characterized by an exponential-family distribution discussed in Chapter 1. The next chapter extends the results here into the more difficult but practically more useful case of hidden Markov models (HMMs).
24#
發(fā)表于 2025-3-25 17:03:56 | 只看該作者
25#
發(fā)表于 2025-3-25 20:18:27 | 只看該作者
26#
發(fā)表于 2025-3-26 03:17:26 | 只看該作者
1932-121X ech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (M
27#
發(fā)表于 2025-3-26 04:26:13 | 只看該作者
CSR, Sustainability, Ethics & Governancey, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminative training gives superior performance over the conventional maximum likelihood (ML)-based training method.
28#
發(fā)表于 2025-3-26 12:03:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:19 | 只看該作者
Book 2008ition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minim
30#
發(fā)表于 2025-3-26 18:39:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-31 01:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巫山县| 阳江市| 岗巴县| 堆龙德庆县| 保定市| 香港| 南充市| 咸阳市| 合作市| 成武县| 达尔| 万荣县| 广东省| 溧阳市| 左贡县| 凯里市| 平顺县| 岢岚县| 泾川县| 通渭县| 隆尧县| 克什克腾旗| 涿鹿县| 广南县| 禄劝| 娄烦县| 朔州市| 永定县| 丁青县| 奎屯市| 晴隆县| 黎平县| 桂平市| 股票| 墨竹工卡县| 石棉县| 镇赉县| 河津市| 南江县| 洛阳市| 丹阳市|