找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete–Time Stochastic Control and Dynamic Potential Games; The Euler–Equation A David González-Sánchez,Onésimo Hernández-Lerma Book 2013

[復(fù)制鏈接]
樓主: 討論小組
21#
發(fā)表于 2025-3-25 05:39:14 | 只看該作者
L. S. Pereira,R. A. Feddes,B. LesaffreBoth direct and inverse problems in optimal control were considered in Chaps. 2 and 3, respectively. In Chap. 4 we dealt with dynamic games. Some of our main results are mentioned below in addition to discussing their relevance and possible generalizations.
22#
發(fā)表于 2025-3-25 08:15:26 | 只看該作者
23#
發(fā)表于 2025-3-25 15:16:59 | 只看該作者
Introduction and Summary,ts of OCPs and stochastic games by means of examples. We also provide an example of a potential game, namely, the . (SLG) of Dechert and O’Donnell [23]. Likewise, we present some related literature about solution methods for OCPs as well as some basic ideas about .. We close the chapter by describing the contents of the remaining chapters.
24#
發(fā)表于 2025-3-25 18:38:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:16 | 只看該作者
Book 2013re where?the Euler equation approach comes in because it is particularly well–suited to?solve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.
26#
發(fā)表于 2025-3-26 01:14:57 | 只看該作者
2191-8198 lve inverse problems.?Despite the importance of dynamic potential games, there is no systematic?study about them. This?monograph is?the first?attempt to provide a systematic, self–contained presentation of stochastic dynamic?potential games.978-3-319-01058-8978-3-319-01059-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
27#
發(fā)表于 2025-3-26 05:41:22 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:11 | 只看該作者
29#
發(fā)表于 2025-3-26 14:07:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗水县| 莲花县| 顺义区| 翼城县| 黄大仙区| 望奎县| 多伦县| 海阳市| 丹凤县| 磐安县| 延长县| 华蓥市| 庆元县| 永胜县| 济宁市| 隆子县| 思茅市| 黄龙县| 大关县| 宁波市| 恭城| 望谟县| 大同市| 黄山市| 吉林省| 阳信县| 定日县| 静宁县| 陇南市| 北京市| 泸西县| 德惠市| 太仓市| 沂源县| 浑源县| 铁岭市| 青铜峡市| 林芝县| 大安市| 揭西县| 建瓯市|