找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time High Order Neural Control; Trained with Kalman Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Louki Book 2008 Springer-Verlag

[復(fù)制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 21:44:23 | 只看該作者
Discrete-Time Block Control,on of the dynamic system is named as the model. Basically there are two ways to obtain a model; it can be derived in a deductive manner using physics laws, or it can be inferred from a set of data collected during a practical experiment. The first method can be simple, but in many cases it is excess
32#
發(fā)表于 2025-3-27 04:50:57 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:10 | 只看該作者
Discrete-Time Block Control, chapter, a recurrent high order neural network is first used to identify the plant model, then based on this neural model, a discrete-time control law, which combines discrete-time block control and sliding modes techniques, is derived. The chapter also includes the respective stability analysis fo
35#
發(fā)表于 2025-3-27 16:17:41 | 只看該作者
Discrete-Time Neural Observers,e observer is based on a recurrent high order neural network (RHONN), which estimates the state vector of the unknown plant dynamics and it has a Luenberger structure. The learning algorithm for the RHONN is implemented using an extended Kaiman filter (EKF). The respective stability analysis, on the
36#
發(fā)表于 2025-3-27 19:25:32 | 只看該作者
Discrete-Time Output Trajectory Tracking,RHONO. This observer is based on a discrete-time recurrent high-order neural network (RHONN), which estimates the state of the unknown plant dynamics. The learning algorithm for the RHONN is based on an EKF. Once the neural network structure is determined, the backstepping and the block control tech
37#
發(fā)表于 2025-3-28 01:21:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:21 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 06:44:44 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 14:27:12 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 新巴尔虎右旗| 灌阳县| 于田县| 巴楚县| 丰城市| 枣阳市| 如皋市| 且末县| 宜章县| 敖汉旗| 白水县| 阿图什市| 韩城市| 宁安市| 清水县| 曲阜市| 正定县| 上蔡县| 武定县| 缙云县| 大关县| 博客| 长岛县| 革吉县| 盖州市| 无棣县| 长葛市| 苗栗市| 吐鲁番市| 甘谷县| 黎平县| 伽师县| 西吉县| 呼图壁县| 监利县| 嘉善县| 邹平县| 株洲县| 南京市| 潜山县|