找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Adaptive Iterative Learning Control; From Model-Based to Ronghu Chi,Na Lin,Ruikun Zhang Book 2022 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: ISH
11#
發(fā)表于 2025-3-23 09:49:04 | 只看該作者
Muchaiteyi Togo,Heila Lotz-SisitkaIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
12#
發(fā)表于 2025-3-23 16:52:05 | 只看該作者
https://doi.org/10.1007/978-3-319-02375-5Chapter . shows some initial results of DAILC methods for nonlinear systems under linear growth conditions where the KTL-like technology is adopted for convergence analysis.
13#
發(fā)表于 2025-3-23 21:42:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:18 | 只看該作者
Mohammadsajjad Sheikhmiri,Tomayess IssaDistributed control that aims for consensus tasks of multi-agent systems has progressed rapidly with a wide range of applications
15#
發(fā)表于 2025-3-24 03:02:52 | 只看該作者
Discrete-Time Adaptive ILC for?Nonlinear Parametric SystemsIn control practice, many control tasks end in a finite interval and repeat. Examples are the track-following control of a hard disk drive, and the temperature or pressure control in a batch reactor. In such a circumstance, iterative learning control (ILC) methods, evolved over the past nearly four decades
16#
發(fā)表于 2025-3-24 08:32:26 | 只看該作者
Data-Weighted Discrete-Time Adaptive ILCIn Chap.?., the DAILC methods can achieve an almost perfect tracking performance over a finite time interval even though both the initial states and the target trajectories vary iteratively. However, all of them have to impose linear growth conditions on the nonlinearities to provide global stability.
17#
發(fā)表于 2025-3-24 11:24:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:25 | 只看該作者
Neural Network-Based Discrete-Time Adaptive ILCAs we all know that neural network (NN) has the property of universal approximation to nonlinear functions, it is therefore considered as a general tool for modeling a nonlinear function and has been applied to the adaptive control systems.
19#
發(fā)表于 2025-3-24 22:00:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:25 | 只看該作者
https://doi.org/10.1007/978-981-19-0464-6Iterative Learning Control; Adaptive Iterative Learning Control; Terminal Iterative Learning Control; D
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 10:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲麻莱县| 交口县| 荥经县| 五台县| 镇雄县| 永登县| 军事| 马公市| 隆尧县| 曲松县| 马关县| 广东省| 巴塘县| 长宁区| 黑龙江省| 安国市| 綦江县| 德安县| 南木林县| 菏泽市| 秭归县| 根河市| 夹江县| 五原县| 秦皇岛市| 广水市| 定兴县| 丰城市| 丰都县| 和政县| 滨海县| 永善县| 息烽县| 辰溪县| 文山县| 中西区| 哈尔滨市| 甘洛县| 宜良县| 重庆市| 宜兰市|