找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry and Graphs; 16th Japanese Confer Jin Akiyama,Hiro Ito,Toshinori Sakai Conference proceedings 2014 Sprin

[復(fù)制鏈接]
樓主: 縮寫
31#
發(fā)表于 2025-3-27 00:29:05 | 只看該作者
32#
發(fā)表于 2025-3-27 04:36:54 | 只看該作者
The Non-confusing Travel Groupoids on a Finite Connected Graph,t . and a binary operation . on . satisfying two axioms. For a travel groupoid, we can associate a graph. We say that a graph . has a travel groupoid if the graph associated with the travel groupoid is equal to .. A travel groupoid is said to be non-confusing if it has no confusing pairs. Nebesky sh
33#
發(fā)表于 2025-3-27 07:47:12 | 只看該作者
34#
發(fā)表于 2025-3-27 13:19:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:13:07 | 只看該作者
36#
發(fā)表于 2025-3-27 17:51:04 | 只看該作者
Transformability and Reversibility of Unfoldings of Doubly-Covered Polyhedra, . with hinges (which compose a dissection tree), . is called . to ., and if the surface of . is transformed to the interior of . except some edges of pieces, . is called . to .. Let . be a reflective space-filler in the 3-space and let . be a mirror image of .. In this paper, we show that any conve
37#
發(fā)表于 2025-3-27 22:45:10 | 只看該作者
38#
發(fā)表于 2025-3-28 02:44:59 | 只看該作者
Properly Colored Geometric Matchings and 3-Trees Without Crossings on Multicolored Points in the Plstence of a non-crossing properly colored geometric perfect matching on . (if . is even), and the existence of a non-crossing properly colored geometric spanning tree with maximum degree at most . on .. Moreover, we show the existence of a non-crossing properly colored geometric perfect matching in
39#
發(fā)表于 2025-3-28 08:20:13 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绿春县| 桦南县| 通海县| 新密市| 汾西县| 武义县| 炎陵县| 昔阳县| 涟水县| 台北市| 图片| 河津市| 霍城县| 鱼台县| 太保市| 湘阴县| 尼勒克县| 刚察县| 衡阳县| 浮山县| 沂南县| 武威市| 专栏| 滦平县| 南木林县| 怀集县| 石棉县| 江华| 新乡市| 河曲县| 长子县| 定远县| 晋州市| 武陟县| 察雅县| 隆安县| 万载县| 五台县| 张家港市| 武鸣县| 涟源市|