找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2000 Springer-Verla

[復(fù)制鏈接]
樓主: 帳簿
51#
發(fā)表于 2025-3-30 10:26:34 | 只看該作者
52#
發(fā)表于 2025-3-30 12:27:10 | 只看該作者
53#
發(fā)表于 2025-3-30 19:47:04 | 只看該作者
54#
發(fā)表于 2025-3-31 00:04:17 | 只看該作者
Living with ,yhedra. We describe an important and difficult class of polyhedra, called configuration polytopes, that have application to determining the ground states of alloy phase diagrams. Experience gained while trying to solve these problems lead to a number of improvements to the original implementation.
55#
發(fā)表于 2025-3-31 02:16:33 | 只看該作者
On the Existente of a Point Subset with 4 or 5 Interior Points.) be the smallest integer such that every set of points in the plane, no three collinear, containing at least .(.) interior points has a subset of points containing . or . + 1 interior points. We proved that .(3) =3 in an earlier paper. In this paper we prove that .(4) = 7.
56#
發(fā)表于 2025-3-31 05:16:02 | 只看該作者
Folding and Cutting Paperf cuts. The folds are based on the straight skeleton, which lines up the desired edges by folding along various bisectors; and a collection of perpendiculars that make the crease pattern foldable. We prove that the crease pattern is flat foldable by demonstrating a family of folded states with the desired properties.
57#
發(fā)表于 2025-3-31 10:58:19 | 只看該作者
2-Dimension Ham Sandwich Theorem for Partitioning into Three Convex Piecesllinear, |..| = ., and |..| = .. This paper shows that Kaneko and Kano’s conjecture is true, i.e., .. ∪ .. can be partitioned into . subsets ..,..,...,.. satisfying that: (i) conv(..) ∩ conv(..) = ? for all 1 ≤ . < . ≤ .; (ii) |.. ∩ ..|= . and |.. ∩ ..| = . for all 1 ≤ . ≤ .. This is a generalization of 2-dimension Ham Sandwich Theorem.
58#
發(fā)表于 2025-3-31 15:17:40 | 只看該作者
59#
發(fā)表于 2025-3-31 18:39:50 | 只看該作者
60#
發(fā)表于 2025-4-1 00:55:34 | 只看該作者
Jin Akiyama,Mikio Kano,Masatsugu UrabeIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹寨县| 涪陵区| 陵水| 衡水市| 尼木县| 温宿县| 若尔盖县| 舟曲县| 惠水县| 遵义县| 原平市| 商都县| 潞西市| 四会市| 石柱| 桐庐县| 临江市| 汝阳县| 沭阳县| 前郭尔| 利川市| 敦化市| 宜春市| 游戏| 雷州市| 正镶白旗| 西宁市| 栾城县| 双流县| 辽宁省| 万州区| 康马县| 招远市| 抚宁县| 屏东市| 北海市| 永嘉县| 阜新市| 金阳县| 江源县| 上栗县|