找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
11#
發(fā)表于 2025-3-23 13:34:23 | 只看該作者
12#
發(fā)表于 2025-3-23 17:51:12 | 只看該作者
,Piano-Hinged Dissections: Now Let’s Fold!, used to rotate a piece . from being next to a piece . on one level to being above or below piece . on another level. Techniques are presented and analyzed for designing piano-hinged dissections. These include the use of polygon structure, the conversion from twisted-hinged dissections, the folding
13#
發(fā)表于 2025-3-23 18:33:15 | 只看該作者
Comparing Hypergraphs by Areas of Hyperedges Drawn on a Convex Polygon,-gon . in the plane with vertices . ., . ., ..., . . which are arranged in this order clockwisely, we let each node .?∈?. correspond to the vertex . . and define the area . .(.) of . on . by the sum of weighted areas of convex hulls for all hyperedges in .. For 0 ≤ .<.<. ≤ .-1, a convex three-cut .(
14#
發(fā)表于 2025-3-24 01:33:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:45:08 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:29 | 只看該作者
Non-Neoplastic Intestinal Disease However, not much is known about the separation problem for these inequalities. Previously Avis and Grishukhin showed that certain special cases of the separation problem for hypermetric inequalities are NP-hard, as evidence that the separation problem is itself hard. In this paper we show that sim
19#
發(fā)表于 2025-3-24 22:18:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:48 | 只看該作者
Non-Neoplastic Intestinal Diseaseector contains 1/3 of each mass). We prove the existence of a continuum of equitable 3-cuttings that satisfy some closure property. This permits us to generalize earlier results on both convex and non-convex equitable 3-cuttings with additional constraints.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
厦门市| 民县| 阿拉善左旗| 大姚县| 棋牌| 勐海县| 临武县| 莆田市| 新乐市| 务川| 南华县| 安国市| 连州市| 屏边| 山东省| 沅陵县| 南阳市| 招远市| 辽源市| 涿鹿县| 莱州市| 碌曲县| 松原市| 宜城市| 永寿县| 宁河县| 丹凤县| 永兴县| 龙里县| 新野县| 普安县| 林甸县| 阿城市| 昌乐县| 彭泽县| 洛宁县| 江门市| 共和县| 龙游县| 公安县| 湖北省|