找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Tomography; Foundations, Algorit Gabor T. Herman,Attila Kuba Book 1999 Springer Science+Business Media New York 1999 3-D torus.bay

[復(fù)制鏈接]
樓主: 氣泡
41#
發(fā)表于 2025-3-28 17:14:06 | 只看該作者
Reconstruction of Plane Figures from Two Projectionsimation. For this purpose, we introduce the notion of type 1 modification against nonuniquely reconstructed figures, and a kind of weight function to classify them. Many interesting open problems remain concerning theoretical justification of proposed algorithms for nonunique cases.
42#
發(fā)表于 2025-3-28 22:08:01 | 只看該作者
43#
發(fā)表于 2025-3-29 00:54:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:46 | 只看該作者
Probabilistic Modeling of Discrete Imageses in that the formulation is suited for the modeling of discrete images, and hence readily applicable to discrete tomography problems. Second, the distribution is “image-modeling” in the sense that random samples drawn from the distribution are likely to share important characteristics of the image
46#
發(fā)表于 2025-3-29 15:01:43 | 只看該作者
Multiscale Bayesian Methods for Discrete Tomographyptimization to find that reconstruction. Multiscale models have succeeded in improving representation of structure of varying scale in imagery, a chronic problem for common Markov random fields. This chapter shows that associated multiscale methods of optimization also avoid local minima of the log
47#
發(fā)表于 2025-3-29 18:03:47 | 只看該作者
An Algebraic Solution for Discrete Tomography It has applications in X-ray crystallography, in which the projections are the number of atoms in the crystal along a given line,and nondestructive testing. The 2D version of this problem is fairly well understood, and several algorithms for solving it are known, most of which involve discrete math
48#
發(fā)表于 2025-3-29 22:10:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:02 | 只看該作者
50#
發(fā)表于 2025-3-30 05:03:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 南开区| 右玉县| 闻喜县| 宁国市| 庐江县| 大安市| 获嘉县| 南昌市| 松桃| 旺苍县| 庄浪县| 茶陵县| 新巴尔虎左旗| 理塘县| 乳山市| 秦安县| 沈阳市| 桃园县| 英吉沙县| 奈曼旗| 英德市| 山丹县| 农安县| 凌云县| 读书| 望江县| 昭平县| 会泽县| 文成县| 松溪县| 瑞丽市| 静海县| 修水县| 灵川县| 班戈县| 双辽市| 宾川县| 泸州市| 城固县| 密山市|