找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Spectral Synthesis and Its Applications; László Székelyhidi Book 2006 Springer Science+Business Media B.V. 2006 Abelian group.bra

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 04:18:51 | 只看該作者
https://doi.org/10.1007/978-1-4612-2798-4bles. If for any nonnegative integer . the symbol . denotes the set of all elements . in . for which the degree of . is not greater than ., then we suppose that the polynomials . with . in . form a basis for all polynomials of degree not greater than ..
22#
發(fā)表于 2025-3-25 08:57:44 | 只看該作者
23#
發(fā)表于 2025-3-25 13:40:50 | 只看該作者
24#
發(fā)表于 2025-3-25 19:13:35 | 只看該作者
25#
發(fā)表于 2025-3-25 23:35:54 | 只看該作者
Book 2006ons, polynomial ideals, digital filtering and polynomial hypergroups is required. This book covers several different problems in this field and is unique in being the only comprehensive coverage of this topic. It should appeal to graduate students and researchers in harmonic analysis, spectral analysis, functional equations and hypergroups..
26#
發(fā)表于 2025-3-26 00:44:52 | 只看該作者
László SzékelyhidiUnified treatment of several different problems.Wide range exposition of discrete spectral synthesis.Original and effective applications of discrete spectral synthesis in different fields.There is no
27#
發(fā)表于 2025-3-26 05:45:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:40 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:10 | 只看該作者
Tumors of the Pelvis: Pathologic AspectLet . be an Abelian group. We say that . is a . if every element of . has finite order. In other words, for every . in . there exists a positive integer . with . = 0. Hence . is not a torsion group if and only if there exists an element of . which generates a subgroup isomorphic to ?.
30#
發(fā)表于 2025-3-26 17:34:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
棋牌| 保定市| 浦北县| 枝江市| 张家口市| 昌吉市| 和林格尔县| 景宁| 城口县| 搜索| 苏尼特右旗| 大同市| 广州市| 平阳县| 常山县| 墨竹工卡县| 满洲里市| 道真| 元阳县| 祁东县| 新乐市| 张北县| 中方县| 噶尔县| 邳州市| 江口县| 五原县| 罗江县| 且末县| 澳门| 榆中县| 益阳市| 吴堡县| 竹北市| 辽宁省| 莆田市| 达州市| 黔西县| 乌鲁木齐市| 大竹县| 龙州县|